Cyber-Shepherd: A Smartphone-based Game for Human and
Autonomous Swarm Control

Hayden Wade and Hussein A. Abbass

Abstract— Human and Autonomous control of a swarm of
robots is a non-trivial task compounded by the multi-agent
nature of a swarm and the tight-coupling in swarm dynamics.
Our previous work has been successful in designing controllers
to shepherd a swarm of sheep by learning from human
demonstrations. However, humans could get disengaged easily
if the platform to collect demonstrations is uninteresting. In this
paper, we propose a smartphone based Shepherding game as
a platform to collect data on the behaviour of Shepherding
models. The game is designed to allow both humans and
artificial intelligence (AI) empowered shepherds to control the
swarm of sheep. The game offers a plug-and-play ability for
different human and AI controllers of the shepherd. The game
logs all movements made by the human during controlling the
shepherd for use by supervised learning algorithms to develop
autonomous controllers. We present and evaluate different
components of the game.

I. INTRODUCTION

Shepherding is a behaviour largely observed in sheepdogs
within agriculture to undergo feeding or shearing [1]. Shep-
herding is defined as “controlling a flock of artificial sheep
with an artificial sheepdog.” ([2, p. 1]) This ability to move
large numbers of self-autonomous agents generated some
interest from machine learning researchers [3] including the
use of genetic algorithms [4] to develop accurate shepherding
behaviours. Shepherding has been used in applications such
as robotics for the autonomous control of multiple robots [5],
agriculture by using drones as an alternative to sheep dogs,
and for crowd control [6].

The ‘Shepherding Problem’ has been tackled in sev-
eral different ways since the concept of artificial flocking
was introduced by Craig Reynolds [7]. Jyh-Ming Lien’s
model [8] is one example of a shepherding model which
would benefit from a shepherding game platform. The model
utilises an interactive motion planning method, where a
human can provide visual hints through laser pointers to
assist the shepherding model in determining the best motion
planning path. The model is able to navigate an environment
with obstacles and can use a single or multiple shepherds.
The human-computer interaction approach taken in their
work demonstrated that the method “gains both efficiency
and accuracy” in shepherding. Furthermore, the model also
utilises adaptive road-map techniques [9] to enable more
effective shepherding behaviours. A single shepherd was able
to achieve locomotion such as side-to-side motion or road-
maps around obstacles which subsequently reduced flock
separation and travelling time. Despite the fact that this
model can be used within a number of different environments
with single and multiple shepherds, it still requires the
assistance of a human to accurately shepherd. Lien states

that the system itself could be improved through enabling
the algorithm to learn from these user inputs.

Strombom [10] illustrated an algorithm where each self-
propelled agent in a flock was subject to local attraction-
repulsion type forces from the flock and interactions from
the shepherd itself. Each agent aims to stay away from the
shepherd while remaining close to its m nearest neighbours.
By setting a specified target location, it was found that
“the shepherd tends to initially collect the agents until they
are cohesive, at which point it starts to drive the herd”.
Strombom emphasised how the shepherd switches between
this driving and collecting behaviour until the agents are
delivered to the target. Through this behaviour, a side-to-side
motion emerged consequently, which mimicked sheepdog
behaviour. Strombom’s algorithm can successfully herd “80
or more sheep” whilst other shepherding models required
multiple shepherds to successfully herd that number.

Our previous work [11], [12] proposed the use of machine
education to design syllabus for educating an autonomous
neural-based shepherd. The success of a supervised learner
in [11], [12] relies on the existence of a large number
of demonstrations collected during humans controlling the
shepherd. However, this was proved to be a tedious task. Hu-
mans could get disengaged easily after a few demonstrations
if the simulation environment is uninteresting. Moreover, the
simulation environment lacked the flexibility and modular
design to allow for multiple control models to be tested.

In this paper, a smartphone-based shepherding game is
developed to provide a means to collect significant data using
a variety of models with ease. We call the game Cyber-
Shepherd. It equally offers consistency when comparing the
performance of different models. Gamification allows for a
large quantity of user behaviour and actions to be recorded.
We chose smartphones considering their wide availability
and ease of use. Globally, smart-phone-based games make
up 41% of the games market revenue [13]. The use of smart-
phones opens the possibility for data collection remotely by
transmitting the data through a mobile connection to a cloud
server.

II. GAMIFICATION FOR SHEPHERDING

Sebastian Deterding’s paper [14] defines gamification as
“the use of video game elements in non-gaming systems to
improve user experience (UX) and user engagement”. De-
terding continues to illustrate that while there are numerous
gamified applications in “finance, health, sustainability...and
tutorials”, there is a body of research looking to “games with
purpose piggybacking game-play behaviour to solve human

information tasks”. Whilst Deterding does not mention the
application of gamification to Al behaviour, it is evident that
this body of knowledge could be implemented within several
other fields of work, in particular, to collect data on user input
to shape Al behaviour.

Gamification has been demonstrated in several fields in
recent years. A good example is discussed by Andrea Rizzoli
with the development of a program called “SmartH20” [15]
which is described as “providing users information on their
consumption in quasi real-time”. The platform uses a gami-
fied user interface which implements a leadership board and
a physical reward system which provides an incentive for
decreased water consumption. It was found that SmartH20
users consumed 20% less water than non-users.

Another example is seen through Danae Vara’s work [16]
which discusses a program called Meeco designed to “guide,
encourage and commit people to live eco-friendlier lives in
a more social and enjoyable way”. The game implements
a scoring system that rewards if “the user repeats an ac-
tion constantly” and “keeps being eco-friendly”. There are
smaller goals which the user obtains rewards from, however
the gamification aspect comes into play by motivating mul-
tiple users to undertake an eco-friendlier lifestyle.

This concept harps with the idea of a Shepherding model
game test platform, where the user input for control of
shepherds could be used as shepherding behaviour to teach
an Al [17] through machine learning. Deterding himself pre-
dicts the influence of gamification by stating that “Gamified
systems ‘in the wild’ provide new objects of inquiry in an
unprecedented variety, data quality and scale”.

Our proposed Shepherding game will implement aspects
of gamification to motivate user involvement and as a result,
would help collect data on shepherding behaviour that could
be used to influence the development of more accurate
shepherding models or could be used directly to teach an
Al what actions are effective.

III. GAME DESIGN AND DESCRIPTION

We define three goals for the design of the game to enable
achieving the intent. The first goal is to implement a software
design that enables dual use of the game to act as both an
engaging experience for a user as well as a test platform for
the testing of various autonomous shepherding models.

The second goal is to allow these shepherding models
within the game to produce data that can be compared among
many other models; thus, data standardisation is important.
The game needs to be developed to allow the game-play from
each level to be recorded in real-time.

The third goal is to develop a game platform that enables
human input through a touch interface that can control the
shepherd. The human demonstrations could be used to train
an Al similar to the work in [12].

The functional and performance requirements were deter-
mined for the game and traced back to the goals as depicted
in Table 1.

A number of design constraints were considered. Firstly,
due to the nature of Android Studio which was used to

Identifier =~ Requirement Outline Traceability

FRO1 The game shall implement an object- Goal 1
orientated design for modularity.

FRO2 The game shall take user input Goal 3
through a touch screen.

FRO3 The game shall be implemented on Goal 3
Android phones with various screen
resolutions.

FRO4 The game shall use Strombom’s Al- Goal 1
gorithm as the Al for shepherd.

FRO5 The game shall use Reynold’s flock Goal 1
behaviour for the sheep.

FR06 The game shall collect game-play in- Goal 2
teraction data.

FRO7 The game shall be a 2D, isometric Goal 3
pixel art game.

FRO8 The shepherd and sheep shall interact Goal 3
and not overlap obstacles.

PRO1 The game shall run at a minimum of Goal 3

30FPS.

TABLE I: Functional and Performance Requirements of
Cyber-Shepherd

design the game, the game was not designed for the use
on Apple phones. This was the case as Apple have their
own development kits. Furthermore, since the processors
within phones are considerably slower than their computer
counterparts, careful design and optimisation of the game
needed to be considered to ensure the game could meet the
requirement.

Since the average gamer spends approximately 24 minutes
playing games on mobile device each day [19], it was
determined a game with simple mechanics and rules would
be the most suitable. The game places either the user, the
Shepherding algorithm or a previous replay in control of a
shepherd that must herd all the sheep clusters on the map to
the target, a green square area.

The game requires the user to collect all the sheep clusters
on the map and shepherd them to the green target in the
shortest time possible. The score is inversely proportional to
the time spent on the level and proportional to the number
of sheep shepherd. In certain levels, there are obstacles on
the way, which the user must herd the sheep around to
successfully complete the level.

The game design involved determining the rules of the
game along with the user interface structure and design.
Furthermore, the gamification elements connecting the un-
derlying data collection aims to the user engagement and
enjoyment were also considered.

The game is a 2-dimensional isometric game that utilises
pixel art as its design. Elements of cyberpunk are used to
create a futuristic urban environment. As such, the game
was named ‘Cyber Shepherd’ to reflect this design. The
environment starts off as a country area with spread out trees
and grassy areas. The user must herd sheep towards a green
grid that triggers a level success as shown in the second
image in Figure 1. As the levels progress, the player moves
through the game world towards a city environment where
obstacles such as buildings, or fence lines force the player
to avoid these obstacles to achieve the best score.

Cyber Shepherd has three distinct game modes; Play,
simulate and replay. The play game mode enables the user to
take control of the shepherd and shepherd the sheep towards
the target. The user uses the touch pad on the screen to move
the shepherd and the game-play is saved in real-time to a text
file.

The simulate game mode enables the user to watch the
shepherding algorithm (in this case, Strombom’s Algorithm)
conduct the level and see observe it performs. This mode is
also recorded to a text-file.

The replay game mode can be selected on any level that
has previous game-play available from the play game mode.
When this game mode is selected, the last game-play of the
user can be watched.

The game implements several menu screens that continue
the cyberpunk theme of the game. These menus allow the
user to choose which level they wish to play and change
settings such as sound and music volume.

The game implements 15 distinct levels with each pro-
gressing level providing the user through increasing com-
plexity by changing shepherding and environmental parame-
ters. Any level can be selected by the user through the menu
screens. The level is defined to be completed when the global
centre of mass of the sheep is in the target area.

With each level that is played, the same data is col-
lected for each game-play iteration. The parameters that are
changed to increase complexity include the number of sheep,
the number and position of sheep clusters, sheep dispersion,
obstacles and initial shepherd positions. Other variables such
as the noise level and relative speed/shepherd speed can be
changed, however these were kept constant for the level
design of the game. Figure 1 shows the parameters that
affect the complexity of the level along with the data that
can be collected from each level which are influenced by
these complexity parameters.

Number of Sheep

Clusters

Shepherding/ Cluster locations
Complexity
Parameters

Shepherding
game Level

Path |Sheepto |Time taken
talen [target time|collecting

Data

Text-file with data

Fig. 1: Diagram of the complexity factors that influence each
level along with the output parameters collected.

The first five levels are designed as simple tutorials to
guide the user around the mechanics of the game. The first
level has the sheep cluster nearby and the user simply has to
drive the cluster along the road to the green target. This

can be seen in the first image in Figure 2. The second
level is similar however the player must first find the cluster
and collect the sheep which are more dispersed. The next
three levels familiarise the player to finding and collecting 2
clusters of sheep and avoiding obstacles on the way to the
target.

The first parameter that was changed to increase complex-
ity is the size of a single sheep cluster, ranging from 20 to 70
over five levels. The initial positions of the shepherd, sheep
cluster and the target are varied through the five levels. This
tests the performance of both the user and the shepherding
algorithm in similar scenarios. Level 10 can be seen in
Figure 2 as the middle image. In the top left hand side of
the image, the target location can be seen.

The levels then progress to the last five levels which
implement several environmental obstacles which the user/Al
must detect and avoid to successfully shepherd the sheep to
the target. In this case, levels 11 and 12 involve obstacles
with a single cluster of sheep. The remaining levels involve
multiple shepherd clusters and obstacles that must be avoided
in order to complete the level. Level 11 can be seen in
Figure 2 as the last image. The shepherd can be seen moving
across a bridge which forces the shepherd to navigate through
a narrow path.

Each level implements a tile map constructed in the
program Tiled. This program allows each level to be con-
structed almost entirely visually. It enables the visual game
environment to be designed easily and obstacles defined and
the initial shepherd, cluster and target locations can also be
chosen visually. This information can then be imported by
the game from the level file.

Fig. 2: Cyber Shepherd Levels 1, 10 and 11 respectively

The shepherding model takes the parameters imported by
the game architecture from the tiled map along with the
hard-coded boundary size and number of sheep for that level
and initializes the shepherding model. In the case the user
chooses to simulate the level, the shepherding model will
then calculate the new position of the sheep and shepherd
each time-step to get the GCM of the sheep to the target. If
the user chooses to play the game, the shepherding model
outputs the position of the sheep and take the players user
input for the shepherd position. This information is then used
by the game architecture to render the game and to output
the information to the data collection subsystem.

Data Collection is performed within the game to enable
the possibility for analysis of game-play. Both user and Al
game modes record the game-play. When a level is chosen,
the initial parameters related to that level including obstacle,
player, sheep cluster and target locations are saved to an
external file. The Data collection class creates a new unique
file for each iteration of game-play. Once this has been
created, the game starts rendering and with each frame, the
coordinates of the sheep and the shepherd are recorded to
the text-file. Data collection stops if the user either exits the
game or finishes the level.

Previous game-play of any level can be replayed within the
game. If the user chooses the ‘Replay’ mode of a particular
level, it will replay the last recorded game-play from that
level or give a "No replays’ message if there are no replays
available. When game-play is available, the Data Replay
class reads through the file and saves the initial parameters to
variables and saves the coordinates of the sheep and shepherd
each frame to array lists. This information is then used by
the Game screen to replay each frame of the game play.

IV. ALGORITHMS AND IMPLEMENTATION ENVIRONMENT

From the requirements set for this paper and using the
game design structure produced within the preliminary de-
sign phase, the software design was developed. The game
was implemented in Java using Android Studio. Furthermore,
the gaming Framework LibGDX was used, which provided
a number of libraries which aided the development of the
graphical component of the game and enabled the gamifica-
tion aspects of the game to be implemented.

Within the design phase of the paper, research was
performed on each of these components to determine the
best design structure for the game. Specifically, the use of
’LibGDX’ required a number of libraries to be researched
and implemented. The class structure was determined as a
result of this research along with the requirements set for the
game.

The class diagram in Figure 3 shows how the game
operates for each of the three modes available. When the user
selects to either play or simulate the game, the shepherding
algorithm classes are initialised. In this case, the initial
position of the target, shepherd and sheep are taken from
the properties of the map through the Map Handler by the
Game Screen and passed to the master call class. The master
call class then initialises the positions of the sheep at the
cluster location along with the initial position of the shepherd
and the target. The individual positions of each sheep at
that cluster position are determined by a particular seed.
The master call class contains a number of methods that
set these variables for the algorithm along with a number of
set parameters for the shepherding and sheep behaviours. It
also contains update methods used to call the Shepherd and
Sheep Objects classes to update the position of the shepherd
and sheep respectively based on each others locations each
frame.

The Shepherd class is used to determine the next position
of the shepherd based on its relative distance to the sheep

Algorithm 1 Shepherding Game Pseudo-code

initialise tile-map level();

initialise level(shepherd location, cluster locations, target
location, obstacles);

save level parameters to text-file();

while sheep GCM != target location do

if game state = user then
shepherd location = user Input();

else if game State = simulation then
shepherd location = get Strdombom

location(sheep locations);

shepherd

else if game State = replay then

shepherd location = shepherd location from text-
file(time-step);

sheep locations = sheep locations from text file(time-
step);

if game state = user || game State = simulation then
sheep locations = update Sheep Locations(player

Location);
save Frame to file(sheep locations, shepherd location,
time elapsed);

render to screen();

end
save score to scoreboard();
level success screen(time elapsed, score);

Shepherding Algorithm
Sheep

Sl Sheep Objects
Shepherd Sheep
Calculations Calculations Asset Handler
Map Music/Sound
Handler Handler
Data

Display

Entities

Data Replay

Input Handler

Fig. 3: Class Diagram of the Shepherding Game

and their relative distance to the target. Furthermore, there
is also an obstacle detection method, which uses the coor-
dinates from the Map Handler to check and respond if any
collision occurs. The Shepherd Calculations class contains
methods that determines the attraction and repulsion to other
shepherds. These methods involving multiple shepherds are
kept if multiple shepherds are used in future work.

The Sheep Calculations class determines the direction of
repulsion from other sheep and from the shepherd. Fur-
thermore, the direction of attraction to other sheep and the
shepherd is also calculated. From this information, the Sheep
Objects class determines the new direction and position
of each sheep. Furthermore, the Sheep Objects class also
implements obstacle detection similar to the method used
for the shepherd. These methods for obstacle detection and
avoidance were implemented for the use in the game. From
each of these classes, the master call takes the position and
direction of each sheep and the shepherd and outputs it to
the Game Screen.

The remaining classes focuses on the implementation of
the gamification, and as such, are classic gaming classes that
we do not discuss here.

V. GAME VALIDATION

Testing was performed thoroughly on Cyber Shep-
herd through the use of the international standard
ISO/IEC12207:2017[20] to define the activities of the testing
methodology. A bottom-up methodology was implemented
to ensure each element of the game functions as required.
Firstly, unit testing was performed on all the methods
contained within each class of the game architecture. This
involved performing a black box test that used sample inputs
and analysed each output. Any errors or discrepancies in any
method resulted in further white-box testing and analysis.

Integration testing was also performed between all the
methods and classes that have an interface within the game
architecture. This was performed for every interface within
the architecture and any errors resulted in further white-box
testing. Subsequent system and acceptance testing was then
performed through thorough game-play.

In order to test if the game was designed and developed in
line with the requirements set for this paper, each functional
component of the game was tested using a number of test
cases. Each test case which specified that each level was
tested involved the testing of each of the 15 levels 5 times. 5
repetitions was chosen due to the time it takes to collect
the data and since the behaviour between repetitions did
not vary significantly. The other test cases were tested 10
times to ensure that no bugs or unexpected crashes occur.
Ten repetitions were undertaken due to the complexity of
these specific subsystems, a negative testing approach was
utilised to find any bugs.

The first test case was performed to test the overall expe-
rience of the game. Each of the menus were accessed and
each button was touched to ensure that the touch screen was
reacting correctly and that the button sounds and commands
were working as desired.

The second test involved watching the AI perform the
shepherding behaviour on every level. The path that the Al
took along with its behaviour in collecting and driving the
sheep was observed. It was found that the behaviour of the
shepherd matched the behaviour expected from Strémbom’s
behaviour. An example of this test can be seen in Figure 4,
which shows the behaviour of the algorithm on level 8. The
level involved collecting then driving a single cluster to the
target.

Level 8 Simulation Replay
- /
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
x (pixels)

1200

1000

y (pixels)

-10(

Fig. 4: Path taken by the AI to shepherd a single cluster
to the target. The large green asterisks designates the target
while the smaller green asterisks designates the initial cluster
position.

The third test was performed similarly to the testing of
the Shepherding AI, however focus was placed on observing
the behaviour of the flock. It was found that the flock’s
behaviour performed in a way that aligned with Reynold’s
flock behaviour and as such, was considered to pass. This
test was performed on every level to ensure there were no
discrepancies in the flocks behaviour.

The fourth test involved testing the data collection and
replay components of the game. Since this forms a critical
part of future analysis on shepherding models from this pa-
per, significant attention was placed on ensuring it performed
without any faults. Each level was played 5 times and each
replay was observed and compared to the actual game-play.
Since the replay component utilised the data collection data,
watching the replay of game-play on each level was sufficient
to test both the collection and replay components.

The fifth test involved playing the game and moving the
shepherding around all areas that can be accessed within the
boundaries of each level. This was performed to ensure that
the order of the map layers were rendered correctly and that
the player was rendered relative to the layers correctly. Each
level was played once with the shepherd moved around each
map completely to complete this test case.

The sixth test case involved testing the interaction of
both the shepherd and the sheep with the obstacles. This
was performed by firstly moving the Shepherding into each
obstacle on each level and ensuring no undesired behaviour
occurred. After this, the sheep clusters were shepherded and
forced to interact with each obstacle on each level as well.
This was tweaked and tested multiple times to ensure all
undesired behaviour was eliminated. An example of how

this behaviour was observed and analysed can be seen in
Figure 5.

Level 4 Player Replay

-100

-200

¥ (pixels)

-400
-600
-600

-700
1500 2000 2500 3000 3500 4000
x (pixels)

Fig. 5: Test undertaken on level 4 to test sheep and shepherd
interaction with obstacles.

The last test case was performed to ensure that the game
maintained a playable frame rate on each level and menu
screen. The game was connected to a computer and the
frame-rate observed in real time. It was found that when
levels were played with numbers of sheep greater than 70,
the frame rate decreased from 30 to an average of 9 FPS on a
Samsung Galaxy S5. Optimisation of the obstacle detection
algorithms increased this to 16FPS which was still too low
for playability. As such, the number of sheep was kept below
a maximum of 50 sheep. To rectify this issue in future work,
a more modern Android phone will rectify this performance
issue. The shepherding algorithm caused a significant load
on the phone and illustrates the potential performance issue
on certain devices for Strombom’s algorithm.

Requirements traceability was also conducted to ensure
that the test cases were designed in a way to verify the
requirements of the game. This was important to ensure that
the design of the game still aligned with the goals of the
research and reinforces the successful implementation of the
requirements. The test case set was designed to trace back to
every requirement set in the requirements analysis. Through
this, it was found that all functional requirements were suc-
cessfully implemented and discovered that the performance
requirement needs further work.

VI. GAME RESULTS

By collecting data from both user and Al game-play, sig-
nificant amount of data can be collected on the performance
of a human versus a particular shepherding model. This
information can provide an insight into certain decisions a
human and AI might make similarly and any differences that
may result. From a significant amount of data that can be
collected from the game, a dataset with successful game-
play attempts from both humans and Al can be constructed.

To align with this goal of the Shepherding game platform,
each level was played by both a human and AI 10 times.
The minimum, average and maximum time taken for both
the user and the AI was collected and plotted to illustrate
the comparative performance of each case. This can be seen
in Figure 6. For the levels which only the human was plotted,

Time Elapsed vs. Level

© Human
o A %

250

N
S
3

—_—

H
Q
S

H
S
S

—

Time Elapsed (seconds)
Fo—1
o
=]

50

Level Number

Fig. 6: Minimum, maximum and average time Elapsed for a
human and Al in each level.

the Al could not complete the level. This was the case due
to either the presence of obstacles or since the Al could not
correctly collect and herd the sheep clusters.

It can be seen for levels between 1 and 5 that both the
human and Al could complete, the time elapsed was very
similar. The minimum and maximum values did not vary
significantly. This was the case due to the simplicity of the
shepherding tasks in each of these levels. The shepherd was
simply required to find the shepherd cluster and drive them
to the target in these cases. For levels 3 and 5, there were
2 clusters that first needed to be collected, with level 5
also containing obstacles. In these cases, the Al could not
successfully collect the sheep and collided with the boundary
for all ten repetitions performed.

For levels 6 to 10, both the human and AI could complete
most of the levels excluding level 10. These levels involved
finding and driving the single shepherd cluster to the target.
The Al had a smaller range of values with an average value
almost identical to the human. In the case of level 10, the Al
could only complete the task twice out of the 10 repetitions.
This resulted in an average value very similar to the human in
the cases it did succeed, however it only had a 20% success
rate.

Levels 11 to 15 required the shepherd to navigate obstacles
such as buildings and fence lines to shepherd the sheep
to the target. With these levels, it became evident one of
the shortcomings of Strombom’s algorithm, which does not
enables the Al to make a decision on how to navigate
obstacles. As such, it was found that the AI could not
complete any of the levels for the 10 repetitions performed.
However, it was clear that the human could perform each
level with varying success. A large margin of error for the
human can be seen for level 14. This was the case due to
the large spread-out area of the map and the varying paths
taken to complete the task.

The path taken by both a human and Al to conduct each
level successfully can be seen in Figure 7. Each level was
played by both the human and AI 5 times. In the levels
where only blue paths can be seen, the Al could not complete
the level, correlating with the results seen in Figure 7. The
large pink asterisks represents the target while the two yellow

Level 1 Replay Level 2 Replay

n |
Level 5 Replay

Level 12 Replay

Level 3 Replay

Level 4 Replay

4

Level 1:1 Replay

Level 10 Replay

Level 14 Replay Level 15 Replay

Fig. 7: Human and Al paths taken to successfully the sheep
clusters to the target. Blue represents the human path while
red represents the Al path.

asterisks represent the initial sheep cluster positions. This
graph highlights how the behaviour of both a human and an
Al could be compared. In particular, the cases where the Al
could not complete a level (i.e. Levels 3, 5 and 11-15) can
be analysed. It can be seen for these cases, the shepherd had
to interact closely with obstacles and to navigate these to
collect and drive the sheep clusters. As such, they highlight
the clear shortcoming in Strombom’s algorithm which can
be seen to be limited to open paddock environments.

VII. CONCLUSION

A Shepherding game was developed to be used as a plat-
form to test and collect data on the behaviour of Shepherding
models with both Al and human-based shepherding control.
Due to a number of gaps in current shepherding models, this
game was developed to provide an accurate benchmark of
how each model performs in a variety of different scenarios.
Furthermore, the data collected from user game play can
be used within future work to accelerate the data collection
process for areas of research such as reward-based learning
and curriculum learning. The results from the game-play of
both a human user and the Al in the levels provided within
the game show clearly within only a few repetitions of play
how the game can highlight any strengths or weaknesses in
shepherding models.

[1]
[2]

[3]

[4]

[51
[6]

[7]

[8]
[9]

[10]

(11]

[12]

[13]
[14]

[15]

[16]

(17]

(18]

(191

[20]

2017.

REFERENCES

J. Aalders, “Dog-livestock interactions: Influences on the behavioural
responses of sheep to working dogs in the herding environment,” 2014.
P. Cowling and C. Gmeinwieser, “Ai for herding sheep,” in Pro-
ceedings of the Sixth AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment. Bradford: Association for the
Advancement of Artificial Intelligence, 2010, pp. 2-7.

C. K. Go, B. Lao, J. Yoshimoto, and K. Ikeda, “A reinforcement
learning approach to the shepherding task using sarsa,” in 2016
International Joint Conference on Neural Networks (IJCNN), July
2016, pp. 3833-3836.

J. Brulé, K. Engel, N. Fung, and I. Julien, “Evolving shepherding
behavior with genetic programming algorithms,” CoRR, vol.
abs/1603.06141, 2016.

W. Lee and D. Kim, “Autonomous shepherding behaviors of multiple
target steering robots,” vol. 17, 11 2017.

K. Fujioka and S. Hayashi, “Effective shepherding behaviours
using multi-agent systems,” in 2016 IEEE Region 10 Conference
(TENCON), Nov 2016, pp. 3179-3182.

C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” in Proceedings of the 14th Annual Conference on Computer
Graphics and Interactive Techniques, ser. SIGGRAPH °87. New
York, NY, USA: ACM, 1987, pp. 25-34.

J.-M. Lien and E. Pratt, “Interactive planning for shepherd motion,”
2009.

0. B. Bayazit, J.-M. Lien, and N. M. Amato, Better Group Behaviors
Using Rule-Based Roadmaps. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 95-111.

D. Strombom, R. P. Mann, A. M. Wilson, S. Hailes, A. J. Morton,
D. J. T. Sumpter, and A. J. King, “Solving the shepherding problem:
heuristics for herding autonomous, interacting agents,” Journal of
The Royal Society Interface, vol. 11, no. 100, 2014.

N. R. Clayton and H. Abbass, “Machine teaching in hierarchical
genetic reinforcement learning: Curriculum design of reward
functions for swarm shepherding,” in IEEE Congress on Evolutionary
Computation. Wellington, New Zealand: IEEE, 2019.

A. Gee and H. Abbass, “Transparent machine education of neural
networks for swarm shepherding using curriculum design,” in
International Joint Conference on Neural Networks. Budapest,
Hungary: IEEE, 2019.

Newzoo, “Global games market report,” Newzoo,” Report, 2018.

S. Deterding, M. Sicart, L. Nacke, K. O’Hara, and D. Dixon,
“Gamification. using game-design elements in non-gaming contexts,”
in CHI ’11 Extended Abstracts on Human Factors in Computing
Systems, ser. CHI EA "11. New York, NY, USA: ACM, 2011, pp.
2425-2428.

A. E. Rizzoli, A. Castelletti, P. Fraternali, and J. Novak, “Demo
abstract: Smarth2o0, demonstrating the impact of gamification
technologies for saving water,” Computer Science - Research and
Development, vol. 33, no. 1, pp. 275-276, Feb 2018.

D. Vara, E. Macias, S. Gracia, A. Torrents, and S. Lee, “Meeco:
Gamifying ecology through a social networking platform,” in 2011
IEEE International Conference on Multimedia and Expo, July 2011,
pp. 1-6.

K. M. Khalil, M. Abdel-Aziz, T. T. Nazmy, and A.-B. M. Salem,
“Mlimas: A framework for machine learning in interactive multi-
agent systems,” Procedia Computer Science, vol. 65, pp. 827 — 835,
2015, international Conference on Communications, management,
and Information technology (ICCMIT’2015).

B. Morschheuser, K. Werder, J. Hamari, and J. Abe, “How to gamify?
a method for designing gamification,” 01 2017.

V. Analytics, “Leveling up your mobile game: Using audience
measurement data to boost user acquisition and engagement,” Verto
Analytics,” Report, 2016.

“Systems and software engineering — software life cycle processes,”
International Organization for Standardization, Geneva, CH, Standard,

