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Abstract—Transparency is a widely used but poorly defined
term within the explainable artificial intelligence literature. This
is due, in part, to the lack of an agreed definition and the
overlap between the connected — sometimes used synonymously
— concepts of interpretability and explainability. We assert
that transparency is the overarching concept, with the tenets
of interpretability, explainability, and predictability subordinate.
We draw on a portfolio of definitions for each of these distinct
concepts to propose a Human-Swarm-Teaming Transparency
and Trust Architecture (HST3-Architecture). The architecture
reinforces transparency as a key contributor towards situation
awareness, and consequently as an enabler for effective trust-
worthy Human-Swarm Teaming.

Index Terms—Artificial Intelligence, Explainability, Human-
Swarm Teaming, Interpretability, Predictability, Swarm Shep-
herding, Transparency

I. INTRODUCTION

Recent technological advances in Artificial Intelligence (AI)
have made the realisation of highly autonomous artificial
agents possible. Contemporary robotic systems demonstrate
their increased capability in tasks that were previously ex-
clusive for humans, such as planning and decision making.
The advent of swarm robotics furthered the potential of robot
systems through the utilisation of a group of relatively simple
robots to achieve complex tasks that cannot be achieved by a
single, sophisticated robot [1]–[3]. For example, the distributed
nature of a swarm of robots gives the swarm an ability to be in
different locations at the same time, something a single robot
can’t do. This could be useful in moving a large object or
simultaneous sensing of a large area.

Taking inspiration from biological swarms, robot swarms
use local sensing and/or communication and simple agent-
logic to achieve global, swarm-level behaviours [4], [5]. A
swarm offers more advantages including physically and com-
putationally smaller robots, robustness against failure, and
flexibility. In general, robot swarms can be categorised by three
broad properties of being flexible, robust, and scalable [6].

Swarm systems are still lacking the human-like intelli-
gence abilities required to manage novel contexts [7]. The
performance of fully autonomous swarms is more sensitive
to environmental conditions than human-swarm teams [8].
For the foreseeable future, involving the human element into
swarm operations is deemed necessary [9]. Nonetheless, the
integration of such highly autonomous entities brings new

requirements beyond those present in classic master-slave
design-philosophy where a machine was to execute only
commands issued by its human operator [10].

One of the main requirements that enables task delegation
in such team settings is trust [11]. Trust was shown to be
an influential variable with a causal effect on human reliance
on swarm [12]. Previous findings suggest that when trust
is based only on swarm capability, humans run the risk of
over-reliance on swarm [13]. Meanwhile, when human trust
is also based on an understanding of swarm operation, this
trust enables proper task delegation without dismissing human
ability to intervene with swarm operation in case of errors [13].
These experimental results demonstrate transparency as the
necessary base ingredient for trust, with reliability providing
the ability to improve trust over time, which is consistent
with well-recognised models for human trust in automation
(e.g. [14], [15]). Trust will likely be vital for ensuring effective
collaboration in human-swarm teaming (HST) systems.

This paper proposes a trust-enabled transparency architec-
ture for HST, we call: Human-Swarm-Teaming Transparency
and Trust Architecture (HST3-Architecture). The architecture
is based on the hypothesis that maintaining a high level of
situational awareness (SA) is an enabler for human decision
making [16] and a facilitator of appropriate trust [13], which
in turn is essential for effective HST. As such, we decompose
transparency into three tenets, which, when applied, support
the human in improving their SA of swarm actions, behaviours
and state information. Transparency in the human-machine
systems literature has commonly been situated in collaborative
team settings, hence its direct relation to trust and improved
joint performance [17]. We present the architecture in the con-
text of HST, where the cooperative attributes of the interaction
are highlighted. Nonetheless, the architecture can be equally
employed in other HST settings (e.g. [9]) and under different
degrees of cooperation where the resulting transparency might
or might not be utilised for shared human-swarm goals.

The HST literature is still in its infancy. The tenets for
transparency have been discussed in other fields that we will
refer to as HxI, such as Human-Swarm Interaction, Human-
Robot Interaction, Human-Autonomy Interaction, and Human-
Computer Interaction. We will more often in this literature
review draw on the literature in HxI to put forward the
requirements for effective HST.

We begin by conducting a review and critique of the
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current literature, covering HST and the fundamental tenets for
transparency of interpretability, explainability, and predictabil-
ity, contained within Section II. Following this, Section III
introduces our proposed architecture to realise transparency
for HST, intending to promote higher SA. We demonstrate the
use of this architecture for a specific case of swarm control,
shepherding a flock of sheep through the use of a drone,
known as Sky Shepherding. We then present critical areas of
open research for the proposed architecture in Section V and
conclude the paper in Section VI.

II. LITERATURE REVIEW

A. Transparency

AI systems are generally categorised into two types: black-
box and white-box. Black-box refers to a system in which
the inputs and outputs can be easily identified, but how the
outputs are derived from the inputs is unknown. White-box
(also known as glass-box) refers to a system whose internal
algorithmic components and/or its generated model can be
directly inspected to understand the system’s outputs and/or
how it reaches those outputs [18]. Examples of such systems
include decision trees [19], rule-based systems [20], [21], and
sparse linear models [22]. The white-box category is generally
accepted as more transparent than the black-box one.

Transparency is an essential element for HxI, yet is also a
concept with significant variations in definition, purpose and
application [23]. For example, in ethics, transparency is the
visibility of behaviours, while in computer science, it often
refers to the visibility of information [24]. For agent-agent
interactions, transparency is used to assist with decision mak-
ing [25]. For an autonomous agent, be it biological or artificial,
transparency has attracted the interest of many researchers due
to its facilitation role in team collaboration [17], [25], [26].

However, there is little research focusing on swarm trans-
parency, due in part to the recent emergence of HST as a
distinctive area. Additionally, the unique challenges of swarm
systems may have impaired further research advancement for
swarm transparency [27]. One of the main challenges is the
decision of whether transparency is needed on a micro or
a macro level. Micro-level transparency exposes information
about the state of each swarm member, which can be useful
in identifying failed or erroneous entities [28]. However, for
large-sized swarms, micro-level transparency could impose
significant bandwidth requirements beyond what is reasonably
possible [29]. Also, the amount and level of information can
overwhelm a human, limiting their capability to keep track
of what is going on [30]. Macro-level transparency is useful
for offering an aggregate picture for the state of the swarm,
but comes at a cost in opacity, obscuring many low-level
details. Within the literature, experimental results are divergent
for which transparency level is better, even for basic swarm
behaviours [30].

A further challenge for swarm transparency stems from the
fact that global swarm behaviours emerge from the actions
of its individual members, with knowledge and behaviours
of swarm individuals being locally focused. Typically, swarm
members are assumed to be unaware of the global state of

the swarm [4], and hence, of whether their behaviours align
with the desired collective swarm state. Consequently, swarm
members might not be able to provide satisfactory explanations
for their actions, the collective behaviour of the swarm, or
importantly understand their role or task within the collective.

Another challenge for transparency is to consider how
to support everyday interactions between human-machine.
In [11], the authors proposed using cyber to support such
interactions, leading to the possibility of swarms existing be-
yond the physical. The adaptability, robustness, and scalability
of swarm systems are also inspiring research into abstract
modelling of cyber-physical systems to support understanding
complex problems [31], [32]. Swarms and swarm behaviour
can exist in both the physical and cyber realm [27] and will
require varying levels of human interaction.

The physical state of swarm individuals such as position,
battery level, and damage, can be aggregated to give a simpli-
fied view of a swarm member’s physical state. What remains
less clear is how the virtual state of swarm members, for
example, confidence levels [33] or intra-swarm trust [34], can
be communicated without overloading the human. In collective
decision-making problems, calculating a mere average of
the confidence levels does not provide an answer to which
members influence the decision making process or whether
the swarm is expected to converge on a correct final decision.

Transparency has received a great deal of researchers’
interest across various fields. The quest for transparency entails
the answer to two questions: 1) What are the desirable aspects
of transparency? And, 2) How to achieve these aspects?
Endsley’s SA model [35] defines what levels of knowledge a
human should maintain to enable successful interaction with
their automation teammate. Chen’s model for agent trans-
parency (SAT) maps these levels into corresponding aspects
of transparency that are required to be exhibited by the
automation. Each level consists of similar goals to [35] to
enable transparently shared understanding [36] by articulating
what information should be conveyed at each level.

When using the SAT model to assess trust factors of
transparency and reliability, Wright et al. [37] found that SAT
was able to support human decision making regardless of the
reliability of the autonomous agent. However, the human was
unable to reconcile trust after observing erratic behaviour by
the autonomous agent, regardless of SAT level used during
task completion. Consequently, while the SAT model supports
transparent decision making, it is unable to support trust
relationships in moments of unreliability due to its emphasis
on the “what” rather than the “how” to architect a transparent
system.

The SAT model is thus helpful in defining what sort of in-
formation is necessary for each transparency aspect and when
each aspect should be made available. Interpretability is key
for understanding, explainability is needed for comprehension,
while predictability is required for projection. These are the
three tenets of transparency required to support SA and SAT.
However, the SAT model does not specify how to engineer
these tenets which is the gap our architecture aims to address.

Unfortunately, there is inconsistency in using these concepts
in the literature. The remainder of this literature review section
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is structured around each of these three concepts. We aim
to reduce the inconsistency around the multiple, often used
synonymously, confusing definitions for transparency. The
literature survey considered work in technological fields, in-
cluding robotics, computer science, and swarm research. When
further grounding of terms is necessary to reduce ambiguity,
we draw on psychology, linguistics, and human factors. We
organise the remainder of this section according to the three
tenets of transparency, being interpretability, explainability,
and predictability.

B. Interpretability

Interpretability in artificial intelligence is a broad and poorly
defined term. Moreover, the present state of the interpretability
literature in the context of swarms is limited. Generally
speaking, to interpret means to extract information of some
type [38].

The literature differentiates two types of interpretability,
being algorithmic and model. Algorithmic interpretability is
the ability to inspect the structure and hyper-parameters of a
system to understand how it works. This is useful to answer
questions about the algorithmic component of AI systems:
i.e. does the algorithm converge? Does it provide a unique
decision? Is the role of its hyper-parameters well-understood?
Model interpretability is related more to the model learned
by the algorithmic component and used to map inputs to
outputs. Several non-mathematical definitions exist in the
literature for model interpretability, such as Miller who states
that “ interpretability is the degree to which an observer can
understand the cause of a decision” [39, pg.8]. Kim et al. who
states that “a method is interpretable if a user can correctly
and efficiently predict the method’s results” [40, pg.7], and
Biran and Cotton who state “systems are interpretable if their
operations can be understood by a human, either through intro-
spection or through a produced explanation” [41, pg.1]. These
definitions convolute the concept of interpretability, causality,
explainability, reasoning, predictability and anticipation.

Only a few studies in the literature have investigated inter-
pretability concepts in the context of swarming systems. In
this regard, interpretability is used to express communication
among agents. For example, Sierhuis and Shum [42] devel-
oped a conversational modelling tool that is used in realistic
analogue simulations of collaboration between humans on
Earth and robots on Mars, referred to as Mars-Earth scientific
collaboration. Lazaridou et al. [43] investigated interpretability
in scenarios where agents learn to interact with each other
about images. Das et al. [44] examined interpretability in
his study where agents interact and communicate in natural
language dialogue on a cooperative image guessing game.
The agents recognise the contents of images and communicate
that understanding to the other agents in a natural language.
These communicating agents can invent their communication
protocol and start using specific symbols to ask and/or answer
certain patterns in an image. The agents then leverage a
human-supervised task to structure the learned interaction in
an understandable way for human supervisors. Andreas et
al. [45] also examine messages exchanged between agents

using learned communication policies. A strategy is developed
to translate these messages into natural language based on
the underlying facts inferred from the messages. St-Onge et
al. [46] studies the expressiveness of swarm motion as a way to
convey high-level information to a human operator. The swarm
motion is tuned to share different types of information. Swarm
aggregation, graph formation, cyclic pursuit, and flocking are
examples of motions used to express different information.
Suresh and Martínez [47] developed an interpreter, an interface
between the human and the swarm, that takes in high-level
input from a human operator in the form of drawn shapes
and translates it into low-level swarm control commands using
shape morphing dynamics (SMD). Further, the interpreter is
also used for translating feedback to a human operator.

The work on interpretability characterises the behaviour
of AI systems in terms of their architecture (or algorith-
mic components), learned computational models, goals, and
actions. Despite the extensive work done in this regard,
these definitions do not explicitly account for the capabilities
and characteristics of the observer agent and its capacity
to recognise and synthesise the interpretations provided. An
agent’s behaviour may be uninterpretable when it does not
comply with the assumptions or the cognitive capabilities (i.e.
knowledge representation, computational model, or expertise)
of the observing agent [48].

C. Explainability

Explainability is required for trust, interaction, and trans-
parency [49], although knowing precisely what is needed for
a good explanation remains unclear [50]. As Minsky notes,
humans find it hard to explain meaning in things because
meaning itself depends on the environment and context, which
is distinct for every person [51]. We reason on human-
understandable features of the inputs (data), which is a critical
step developing the chain of logic of how or why something
has happened or a decision was made [52]. Humans can learn
through a variety of methods and transfer experiences and
understanding from one situation to another develop heuristic
short-cuts, like common sense, along the way. Complex chains
of reasoning with ill-defined elements tend to make it difficult
to explain and justify decisions [49]. An explanation can be
developed dynamically after the fact, becoming communicated
through a story from a mental model developed in the mind
of the person communicating the explanation [53].

Many definitions for explainability have been published,
overwhelmingly without the precision of a mathematical ac-
companiment. Explainability definitions vary substantially in
terms of length, ambiguity, and context. Many are relatively
short yet insightful, such as Josephson and Josephson who
state that “an explanation is an assignment of causal respon-
sibility” [54, pg.14] or that “an explanation is the answer to a
why-question” [55, pg.7]. The Defense Advanced Research
Agency (DARPA) explainable artificial intelligence (XAI)
program indicates that XAI “seeks to enable third-wave AI
systems, developing machines with an enhanced understanding
of the context and environment for which they operate in” [56,
pg.1], although without bounding the problem space further.
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Miller states that “explanation is thus one mode in which
an observer may obtain understanding, but clearly, there are
additional modes that one can adopt, such as making decisions
that are inherently easier to understand or via introspection”
[55, pg.8] or from the perspective of cognitive architectures
“information is a linguistic description of structures observable
in a given data set” [57, pg.3].

The previous definitions are generally considered too broad
or ill-defined to enable adoption of a formal architecture.
Application of such definitions as those selected here requires
an implicit input from the user, particularly their expertise,
preferences, and environmental context [58].

Nyamsuren and Taatgen [59] argue that human general
reasoning skill is inherently ‘a posteriori’ inductive, or prob-
abilistic. They base this on two key points: 1) deductive
reasoning, in its classical form, states that what is not known
to be true — is false, which therefore assumes a closed
world; and, 2) humans have shown to use an inductive,
probabilistic reasoning process even when seemly reasoning
with deductive arguments. This world view can be on a local-
or global-level, described as either micro or macro from the
systems perspective. Local explainability refers to the ability
to understand and reason about an individual element of the
system, such as a particular input, output, hyper-parameter, or
algorithmic component if the system consists of more than
one. Several definitions exist for explainability that can be
categorised as a local explanation, such as Miller [39] who
state that local explanations detail a particular decision of a
model to determine why the model makes that decision. This
is commonly achieved by revealing casual relations between
the inputs and outputs to the model. Biran and Cotton state
that a justification “explains why a decision is a good one,
but it may or may not do so by explaining exactly how it
was made. Unlike introspective explanations, justifications can
be produced for non-interpretable systems.” [41, pg.1] Global
explainability often describes an overall understanding of how
a system functions or an understanding of the entire modeled
relationship between inputs and outputs [60]. A system is said
to be globally explainable if its entire decision-making process
can be simulated and reasoned about by an external agent, who
is a target for the explanation [61].

Long standing questions around how to produce an explana-
tion, if a process should be explainable [62] and what should
be required for an explanation to be considered sufficient [50]
remain open within the literature. These notions follow from
what Searle described as within the realm of strong-AI [63],
noting that machines must simulate not only the abilities of
a human but also replicate the human ability to understand a
story and answer questions. A desire for machines to imitate
and learn like humans is not a new concept [64].

While reasoning presents itself as a method for a logical
explanation, fundamental questions of What, Who, Which,
When, Where, Why and How, i.e. the ‘wh’ -clauses, of
explainability require careful consideration. Rosenfeld and
Richardson [65] highlight the interconnecting nature of these
questions and assert the motivation for the system itself has a
direct bearing on the overall reason or reasons the system must
be explainable. Whether the system is designed as human-

centric, built to persuade the human to choose a specific
intention, action, or outcome; or, agent-centric, to convince
the human of the correctness of their intention, action or
outcome, the explanation provided should contribute to the
overall transparency of the system—including the human.
Explaining is far more effective when a co-adaptive process
is employed [66], which Lyons [67] discusses through an HxI
lens as robot-to-human and robot-of-human factors. Only then
can one determine What explanations are required, Who the
explanations are directed toward, Which explanation method
suits, When the information should be presented or inducted,
Where they should be presented or inducted, Why explainabil-
ity is needed in the system, and How objective and subjective
measures can be used to evaluate the system [65].

There are many swarm system control mechanisms and
architectures that have been developed and introduced, but
insufficiently address understanding for supervisory control
of such systems, particularly for the human interaction with
various levels of swarm autonomy [68]. Previous research
has investigated the principles of swarm control that enable
a human to exert influence and direct large swarms of robots.
What has been lacking is the inclusion of bi-directional,
interpretable communication between the supervisor and the
swarm. This has limited the development of a shared under-
standing as to why or how either the human or swarm is
making decisions. Addressing such information asymmetry is
essential to realise HST [69] fully. Such asymmetry manifests
during HST where some actions or behaviours may not be
immediately apparent to the human if a swarm behaviour
doesn’t align to the human’s expectations [69]. The swarm
may assess that this behaviour is optimal to achieve the goal,
but requires explaining to the human in order to ensure that
confidence in the swarm is maintained. Previous HST studies
have noted the importance of appropriate and consistent swarm
behaviours, although lack a method to provide feedback to
the human [70]. This asymmetry of information highlights
the difference between human-to-swarm and swarm-to-human
communication, which is an essential element to consider for
facilitating teaming. Swarms are commonly used to support
a human’s actions in HST [70]. However, without an ability
to query how the swarm chooses a future state, human team
members may not be confident in action being taken by the
swarm. In such situations, interrogation of the swarm to gen-
erate explanations could alleviate such issues of confidence,
increase shared understanding, and build trust for HST.

D. Predictability
The Cambridge Dictionary defines the word predict as “to

say what you think will happen in the future” [71]. The
term “predict” has been used by researchers to refer to not
only forecasting future events but also estimating unknown
variables in cross-sectional data [72]. Similarly, the term
“predictability” is used to denote different notions including:
the ease of making predictions [73], behavior consistency [74],
and the variance in estimation errors [75].

An agent’s predictability has received significant attention
in HxI due to its significant impact on interaction and system-
level performance. Agent predictability has been defined as
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the degree to which an agent’s future behaviours can be
anticipated [14]. The term has also been commonly used to
reflect the consistency of an agent’s behaviour over time (e.g.
[76]–[78]). Coupling predictability and consistency implicitly
assumes that making future predictions about an agent is
completely performed by the agent’s teammate (or observer)
and that these predictions are heavily based on historical data
and/or pre-assumed knowledge.

The ability to predict an agent’s future actions and states is a
crucial feature that facilitates the collaboration between agents
in a team setting [79]. In highly interdependent activities,
predictability becomes a key enabler for successful plans [79].
Also, predictability is an essential factor that facilitates trust
by ensuring the matching between the expected and received
outcomes [80]. Previous research utilised predictability to
achieve effective collaboration in various HxI applications
including industry [81], space exploration [82], and rehabil-
itation [83]. Depending on the requirements and the issues
present in these domains, agent predictability was aimed to
serve different purposes that can be grouped into the following
areas: mitigating the effects of communication delays, allow-
ing humans to explore possible courses of actions, enabling
synchronous operations and coordination, and planning for
proactive collision avoidance.

Remote interaction between agents can be severely impacted
by considerable communication delays that impede their col-
laboration. This is particularly the case for space operations
where the round trip communication delay is several sec-
onds [84]. Such a delay was shown to be detrimental as
it negatively affects mission efficiency and the stability of
control loop [85]. One of the earliest and most widely used
solutions to mitigate the effects of significant communication
delays is the use of predictive displays. A predictive display
uses a model of the remote agent, its operation environment,
and its response to input commands to estimate the state of
the mission based on the historical data recently received
from the agent. This enables predictive displays to provide
an estimation of the current state of the agent that has not
been received and to provide timely feedback on the predicted
future agent’s response to input commands that is yet to be
received by the agent. This allows for smooth teleoperation as
compared to the inefficient wait-and-see strategy [86]. Past
studies show that predictive displays can maintain mission
performance [87] and completion time [88] at levels similar to
no delay. Previous findings also demonstrate the effectiveness
of predictive displays in enhancing the concurrency between
remotely interacting agents under variable time delays [89].

Robot predictability is the main subject of investigation in
studies involving predictive displays that are either used to ac-
count for communication delays [88] or to facilitate exploring
action consequences [81]. Likewise, robot predictability is the
focus when people are assumed the responsibility for avoiding
collision with the robot [90]. As for systems where a human
executes a physical activity that needs to be synchronised with
robot actions, human predictability becomes an enabler for
successful operation. This can be the case for some industrial
applications [91] or rehabilitation scenarios [83], [92]. While
predictive displays are mainly used to enable effective inter-

action in the presence of considerable time delays, the same
concept has been used to allow for the exploration of the
consequences of user commands without actually executing
them. Several studies proposed the use of predictive displays to
predict robot responses to human commands for training [81],
validation [84], and planning [93] purposes. In such cases,
human input commands are sent only to the virtual (simulated)
robot and not to the actual robot. This enables people to
explore how their actions affect the state of the remote robot
without causing its state to change. Once the human is satisfied
with the predicted consequences of a command (or a sequence
of commands) and the command passes the essential safety
checks, it can be committed and sent to the remote robot to
execute.

Another crucial purpose for agent predictability is to enable
the synchronisation and coordination between collaborating
agents. Action synchronisation can be critical for the success
of highly interdependent tasks. For instance, there are stud-
ies which investigate the utility of using predictions about
humans’ intended future actions to enable the operation of
assistive and rehabilitation robots [83]. These predictions
can then be used to calculate the optimal forces a robotic
limb should apply to help the human perform the intended
movement without over-relying on the robot [92].

Collision avoidance is also an area that benefits significantly
from agent predictability. While operating within an environ-
ment shared with other moving objects, an agent needs to
ensure collision-free navigation to avoid possible damages or
safety accidents. A fundamental way proposed to use agent
predictability for collision avoidance was to require the agent
to announce its planned trajectory so that other agents can plan
their motion accordingly to avoid it [90]. Other approaches
focus on equipping the agent with the ability to detect the
motion and predict the future positions of other moving objects
so that the agent can actively act to avoid a collision. The
agent may not be able to plan a complete collision-free path
from the onset. Instead, the agent can continuously monitor its
vicinity and predict whether the motion of the other agents will
intersect with its planned path causing possible collisions [94],
[95]. This allows the agent to proactively avoid collision by
re-planning its path according to its updated prediction, or wait
till the path is clear if necessary.

Swarm predictability has been the focus of only three
papers [87], [96], [97]; all of which report on the same
experimental study. In that study, the predicted state of swarm
members is used to enable human control of the swarm under
significant time delays. Besides predicting agents performing
the task, task success can also necessitate predicting the state
of other agents or objects that share the same operating
environment. For instance, human bystanders are the agents to
be predicted in systems where the robot has to ensure collision-
free navigation in its path planning [94], [95].

III. HUMAN-SWARM-TEAMING TRANSPARENCY AND
TRUST ARCHITECTURE (HST3-ARCHITECTURE)

A. Design Philosophy
Autonomous systems will continue to increase their level of

smartness and complexity. These desirable features, necessary
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Figure 1. The generalised HST3-Architecture.

for autonomy in complex environments, bring the undesirable
effects of making their teaming with humans significantly
more complex. As we expand the teaming arrangements from a
single autonomous system to a swarm of autonomous systems,
the cognitive load of the humans involved increases signif-
icantly; thus leading to unsuccessful teaming arrangements.
Two design principles are needed to reduce the cognitive
overload from their teaming with a swarm. First, transparency
in swarm operations is required to enhance contextual aware-
ness by understanding changes in priorities and performance.
Second, two-way interaction between a human and swarm
offers the ability for a human operator to ask questions and
receive answers during swarm operations at different points in
time to revise goals, beliefs, and update operating conditions.

HST3-Architecture promotes swarm transparency, while
integrating two-way interaction in HST systems. HST3-
Architecture leverages the proposed tenets of transparency and
Endsley’s SA model [35] to develop a generic transparency
system to maintain a mutual and/or shared understanding of
the current status, plans, performance history, and intentions
between human operators and the swarm.

In contrast to the focus on the what in the SAT model [25],
we propose an architecture that is focused on how by adopting
a systems engineering approach to fuse together interpretabil-
ity, explainability, and predictability. By linking the tenets to
transparency together, we can design for both transparency
assurance, as well as diagnosis for failure tracing in a system.
We first focus on a functional definition of the three tenets of
transparency: interpretability, explainability, and predictability.

Interpretability allows for shared knowledge of the situation
and outcomes [55], [98]. Interpretability supports transparency
by ensuring that knowledge is transferred properly among
agents. Interpreting [99] is the process of mapping spoken
words between two languages. Consequently, interpretability
enables transparency by facilitating communication between
agents using a knowledge set that includes language and pro-
cesses. Interpretability could be seen as a form of translation to

convey original meaning [99], could include sentiments [100],
and capture cognitive behaviours such as emotions [101].

While some authors use the terms explainability and inter-
pretability interchangeably [55], we contend that the two terms
must be differentiated. By positioning interpretability as a
functional layer between the system’s ability to explain and the
agents a system is interfacing with, we eliminate ambiguities
and achieve a modular design for autonomous systems that
separate the two functions. Explainability augments inter-
pretability with deeper insights into sentiments and an agent’s
cognitive and behavioural states by expanding the causal chain
that led to the state that is subjected to interpretability. Ex-
plainability assigns understanding to an observer’s knowledge
base by providing the causal chain that enables the observer
to comprehend the environment and context it is embedded
within. Comprehension of the environment allows the observer
to improve their SA and support robust decision making [16].

Interpretability and explainability together offer an observer
with understanding and comprehension of a situation. The
sequence of transmission of meaning to an observer affords the
observer with necessary updates in the observer’s knowledge
base. These knowledge updates are necessary for the observer
to infer whether or not the sequence of decisions is expected.
The updates allow agents to deduce consistency of rationale
and induce or anticipate future actions. Such consistencies
promote mutual understanding of an outcome [102].

The knowledge updates achieved through interpretability
and explainability form the basis for predictability. As a
necessary component for joint activity [79] and team success,
mutual predictability becomes an engineering design decision
facilitated through explicitly defined procedures and expec-
tations. Predictability among agents brings reliability [80]
to transparency. By using transparency as the basis of our
architecture, and enabling reliability by design, we present an
architecture that supports human-swarm teaming and offers a
modular design to inform trust calibration.

Figure 1 presents a conceptual diagram of the architecture.
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The direct line of communication to the swarm is through
the user-interface, and therefore becomes the focal point of
the outputs produced by the interpretability, explainability and
predictability modules. For efficient HST, the system should
only exchange with external actors through the interpretability
module. System explanation and prediction information are
parsed to the interface once mapped into a human interpretable
format by the interpretability module. Additionally, the user
module can query the system, through the interface, at any
time for state information, explanations, and/or prediction
requests.

B. Disambiguating the Tenets of Transparency

The literature review has demonstrated the confusion in the
existing literature on appropriate definitions for the tenets of
transparency. Before we are able to present an architecture
for transparency that encompasses these tenets, it is pertinent
that we disambiguate these concepts by presenting concise
definitions.

• Aw: A worker agent whose logic is required to be
interpreted to another agent.

• Ao: An observer agent that synthesises the behaviour of
a working agent (Aw) to understand its logic.

• E: The environment that provides a common operating
context for both agents Aw and Ao.

• S(t): The state of the mission (i.e. overall aim the human
and the swarm aim to achieve together) at time t.

• Sw(t): The state of the mission as perceived by the
worker agent at time t.

• So(t): The state of the mission as perceived by the
observer agent at time t.

• Lw: Algorithmic components of the working agent.
• Mw: The computational model learned by the worker

agent through interactions within E.
• Mo: The computational model of the observing agent.
• K: A knowledge set.
• α and γ: internal decisions made by an agent.
• ≺: A partial order operator.
• Ω: A decision that has been made internally and ex-

pressed externally by an agent.

Definition 1. Interpretability, I , is a mapping of a system’s
behaviour in terms of its algorithmic components, computa-
tional model and mission state, to a knowledge set K in a form
appropriate for observing agent to integrate with its internal
knowledge (i.e. context, goals, intentions, and computational
capabilities of the observing agent).

I : (Lw,Mw, Sw(t))→ K (1)

Definition 2. Explainability, E, defined as a sequence of
expressions in one language that coherently connects the
inputs to the outputs, the causes to the effects, or the sensorial
inputs to an agents’ actions.

E : (Lw,Mw, Sw(t),Ω)→ α ≺ γ ≺ · · · → Ω, (2)

Definition 3. Predictability, P , is an estimation of the next
state of a mission given previously observed mission states by
an agent.

P : (Lw,Mw, Sw(t : t− τ))→ S(t+ 1), (3)

C. The Architecture

Figure 2 illustrates the architecture for the proposed trans-
parency and trust architecture. HST3-Architecture follows a
three-tier architecture and is typically composed of an agent
knowledge tier (lower layer), an inference engine tier (middle
layer), and a communication tier (top layer).

The lower layer of HST3-Architecture contains state infor-
mation on task-specific knowledge and the learning processes
used by the agent. The middle layer consists of two primary
modules being explanation and prediction. The explanation
module presents to the operator’s the causal chain of events
and state-changes that led to the current state of both individual
swarm members and the swarm as a whole. The predictabil-
ity module supports projection and anticipation functions by
informing the swarm’s future states and what-if analysis. The
top layer is a bidirectional communication layer that interprets
messages exchanged between the human operator and the
swarm. It interprets the swarm’s state information, reasoning
process, and predictions in a langauge and framing calibrated
to the human operator. It also maps a human operator’s
requests into appropriate representations commensurate with
the swarm internal representations, knowledge, and processes
for explanation and predictability.

In the remainder of this section, we will expand on each of
these modules.

1) Interpretation Module: The interpretability module acts
as the interface with external entities to the swarm and
offers bidirectional communication capabilities between the
swarm and external human and non-human actors. Accord-
ing to Equation 1, interpretability should account for the
computational models for both the working and observing
agents, the shared context between both parties, and maintains
a knowledge representation method accepted for them. The
interpretability module relies on three types of services:

• Language Services: different ontologies, taxonomies,
parsing, representations and transformations need to exist
to allow the interpretability module to offer bi-direction
communication capabilities. In heterogenuous swarms, it
could be necessary to communicate in different languages
within the swarm, as well as to the actors the swarm is
interfacing with.

• Fusion Services: the ability to aggregate and disaggregate
information is key for the success of the interpretability
module. The swarm need to be able to take a request
for a swarm-level state information and decompose it
into primitive state information that needs to be fused
to deliver the information on the swarm level. These
fusion services need to be bi-directional; that is, they are
aggregation and de-aggregation operators.

• Trust Services: the ability of the interpretation module
to respond to bi-directional communication requests rests
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Figure 2. A UML interaction overview diagram describing the HST3-Architecture.

on its ability to represent which information types and
contents are permissible by the swarm, allowed for shar-
ing to whom, in which context, and by which member of
the swarm. The challenges as well as opportunities in a
swarm are that these trust services could de-centralised.
All members in the swarm need to have the necessary
minimum information needed to allow them to perform
trust services during interpretation.

2) Explanation Module: Explainability provides the infer-
ence and real-time reasoning engines, as well as the knowl-
edge base within HST3-Architecture. It generates the causal
chain output in response to a particular request through the
interpretability module as shown in Figure 2. The role of the
explainability module is to deliver a service to the user; thus,
the actor the swarm is interacting with is a central input to
how the swarm should calibrate its ability to explain to be
suitable for that particular actor.

While the explainability module responds to a request
that arrived through the interpretability module, the output
of the explainability module needs to go back through the
interpretability module to be communicated to the actor(s)
interacting with the swarm. The unification of the represen-
tation and inferencing mechanisms within the explainability
module offers an efficient mode of operations for transparency.
For example, a single neural network to operate, metaphori-
cally a single brain, while allowing the swarm, through the
interpretability module, to, metaphorically, speak in different
languages.

The explainability module offers the user with understand-

ing of the behavioural decisions, past, present, and future, of
the swarm through the single-point of explainability. The user
receives an explanation of the current state of the swarm,
answering questions such as: what are the swarm members
doing? Why are they doing it? What will they do next? That
is, the type and level (micro vs macro) of the explanation
information will be driven extrinsically by user inquiries and
intrinsically by trust and teaming calibration requirements.

3) Predictability Module: Predictability is a bi-directional
concept. First, the swarm needs to be able to share their
information to eliminate surprises for the human. Second,
the swarm needs to be able to anticipate human states and
requirements. The simplest requirement for predictability is to
respond to questions requiring projection of past and current
states into a future state. Such a requirement can be achieved
in its basic form through classic prediction techniques.

The performance of the predictability module relies on a few
services to deliver mutual predictability in the operating envi-
ronment; these are: contextual-awareness services, prediction
services, anticipation and what-if services, and theory-of-mind
services.

Mutual predictability requires the swarm to maintain sit-
uation awareness on the context; that is, the state of itself,
other actors, and their relationship to the overall objectives
that need to be achieved in this environment. The decentralised
nature of the swarm means that the context is distributed and
needs to be aggregated from the information arriving through
the interpretability and explainability modules. The contextual-
awareness services depend on prediction services, anticipation
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and what-if services, and theory-of-mind services.
The anticipation and what-if services simulate in the back-

ground the evolution of the swarm and human-swarm in-
teraction to anticipate physical and cognitive state variables.
These simulations run in a fast-time mode, projecting future
evolutionary trajectories of the system to identify what is
plausible. The emphasis of anticipation is more on plausibility
and less on prediction. Meanwhile, the prediction services
focuses more on prediction. These services are more data-
driven than model-driven and simulation-driven. They rely on
past and current state-information to estimate future states.

Mutual predictability requires an agent to have a model of
itself and other agents in the environment. These models are
offered in our architecture using the theory-of-mind services,
which model other agents in the environment with an aim to
anticipate their future needs of information to ensure these
pieces of information are communicated to improve mutual
predictability.

Human‘s form their internal mental models based on obser-
vations and previous knowledge of different situations [103].
A mental model, as defined in the cognitive psychology
literature, is a representation of how a user understands a sys-
tem. In the context of swarm transparency, state information,
explanations, and predictability on the micro and macro level
help to form and update more accurate and complete mental
models of the system [104], and the complex algorithmic
decision-making processes embedded within the actors [105].

The formation of mental models comes at a cost—an
increase in cognitive load. The cognitive load required to build
a mental model is dependent on the type of mental model,
the complexity, amount, and level of information presented
to the user for processing [104]. The four distinct functional
abilities Langley et al. [106] further developed from Swartout
and Moore’s description [50], can be directly applied to HST
through Lyons‘s four transparency models [67]. At the highest
level, building an intentional mental model allows the human
to understand the intent or purpose of the swarm. Once this
is understood, the user can begin to build swarm task mental
models. To achieve this, the system must explain which actions
the swarm executed and why, the plans and goals the swarm
adapted, or inferences the swarm made to the user.

The predictability module has two modes of operation,
being an autonomic-mode and an on-request mode. The
autonomic-mode perform self-assessment of self-needs and the
needs of other actors in the environment, then acts accordingly.
The default mode can also be set to send predicted risks that
can disrupt swarm operations. The on-request user inquiry
mode seeks to provide dynamic predictions, for instance,
to answer a question arriving from external entities to the
predictability module and user-questions such as “where will
the swarm be in five minutes?”, or “what is the predicted
battery level of a particular swarm member at some specified
time in the future?”. That is, the type and level (micro vs
macro) of the predicted information will be driven by external
and user inquires.

The adaptability needs to adhere to human cognitive con-
straints by presenting only the main predicted state variables
while also communicating granular predictions as per user

needs. The theory-of-mind services play a crucial role in the
assurance of this requirement.

D. Objectifying Transparency

It is less productive to discuss transparency in a technol-
ogy purely from a qualitative perspective, without offering
designers and practitioners appropriate concrete guidelines
and metrics to guide and diagnose their designs. The core
motivation for transparency in HST is to improve the efficiency
and effectiveness of the overall system-of-systems composed
of the swarm and all other actors, including humans, involved
in the delivery of the overall solution.

While providing a measure of transparency is essential
for the user, what also must be considered is the account-
ability of this answer. Determining the contribution each of
interpretability, explainability, and predictability to situations
where the provided information does not satisfy the needs of
human operations is an important consideration. Moreover, the
measurement and reporting of transparency must consider the
level of granularity required against human operators cognitive
capacity to ingest, process, and use the information.

The HST3-Architecture offers an advantage through design,
by considering the level and type of information presented to
the user, per Figure 1. The measurement and evaluation of the
HST3-Architecture is an essential element, which enhances
transparency by decreasing or eliminating all together any
level of opaqueness. Transparency leads to an increased user
SA, and ultimately system reliability [107].

The measurement and evaluation of transparent systems
have been previously identified as a research gap to understand
the user-based measures [58], and how both objective and
subjective measures can be used to evaluate a system designed
to be transparent [65]. We assert that to measure and evaluate
a level of transparency, indicators for each of the transparency
tenets must be measurable. Each tenet of transparency in
HST3-Architecture could then be evaluated using a multitude
of metrics in the literature. For example, several existing ob-
jective and subjective measures and meta-categories have been
proposed in the literature [58], [107]–[109]. Interpretability
could be evaluated using a questionnaire, by asking the user
whether the message arriving from the swarm is easy to
understand or not. We will use β to indicate a function that
outputs one of three levels for each tenet in achieving its intent,
where

• β0, indicating that one of the tenets is either absent
or non-functional. For example, β0(I) indicates that the
system does not have an interpretability module that is
functioning properly.

• β1, indicating that one of the tenets is functioning at a
level deems to be fit-for-purpose for the task. We do not
assume, or aim for, perfection due to the fact that every
technology is evolving in its performance as the context
and environment continues to evolve. For example, β1(I)
indicates that the system has an interpretability module
that has been assessed to be functioning properly and is
communicating in a language appropriate for other agents
to understand.
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Table I
CASES OF TRANSPARENCY

Case Transparency Case I E P

1 Opaque 0 # #
2 Confusing θ !0 !0
3 Communicative !0 0 0
4 Rationally Communicative !0 !0 0
5 Socially Communicative !0 0 !0
6 Articulate 1 0 0
7 Rationally Articulate 1 !0 0
8 Socially Articulate 1 0 !0
9 Fit-For-Purpose 1 1 1

• βθ, indicating that one of the tenets is functioning but
there is a level of dissatisfaction with its performance.
This could be a low, medium or high dissatisfaction.
We do not differentiate between the different levels of
satisfaction in this paper as they all indicate that a level
of intervention is needed to improve this particular tenets.

The tenets of transparency are not additive. As we will
explain below, a system that has a functional explainability
and predictability modules will be considered a black-box
system if the interpretability module is dysfunctional. We will
use a wildcard symbol (#) to indicate a don’t care match.
For example, β#(E), indicates that we do not care about the
level of explainability in this system; that is, regardless of
whether it is absent all together, partially functional, or a fit-
for-purpose, explainability has no impact on transparency in
this particular scenario. When a particular state is excluded,
we use the exclamation mark as a negation; that is, β!0(I)
indicates that the interpretability module is either βθ(I) or
β1(I).

We can now define nine distinct cases of transparency using
its three tenets: interpretability (I), explainability (E), and
predictability (P ). The nine cases are listed in Table I

The first case, opaque transparency, is when the inter-
pretability module is absent or not functioning at all. In
this case, regardless of whether the swarm possesses internal
abilities to reason or has predictability abilities, the swarm is
unable to communicate any of these capabilities with external
actors. The external actors could observe the swarm’s be-
haviour, and may develop a level of trust if the swarm performs
well and they can anticipate its behaviour, but the lack of
interpretability makes the swarm unable to communicate to
other entities. In other words, the interacting agent is unable
to harness any of the tenets that support transparency. Such
opaque swarm may be understood post analysis [18]; however,
real-time interaction will be problematic.

The second case, confusing transparency, occurs when the
interpretability module is making mistakes. The explainability
and predictability modules could be functioning perfectly or
generating mistakes on their own, confusing the messages the
swarm is communicating even further.

The third to fifth cases occur when the interpretation mod-
ules is functioning, even partially, and at least one of the
explainability or predictability modules are not functioning.
In the case when none of them is functioning, the swarm
can communicate state information to other actors in the

environment, albeit it may break down from time to time if
interpretability is evaluated as βθ. While a level of mutual
understanding among the swarm and humans may evolve,
it will likely be limited, which will hinder the situation
awareness of the agent. An example of this system is presented
in [110]. If the explainability or predictability modules func-
tion, the case of transparency is called rationally and socially
communicative, respectively.

The sixth to eighth cases of transparency mimics the third
to fifth cases, except that the interpretability module is fit-
for-purpose, thus, it delivers intended meaning consistently.
We label this case as an articulate swarm. When either the
explainability or predictability module are functioning, the
case is labelled rationally and socially articulate, respectively.

The last case of transparency is when all three modules are
functioning at a level appropriate for the human-swarm team
to operate effectively and efficiently. This a fit-for-purpose
transparency.

It might be worth separating an overlapping case that we
call Misaligned transparency, when the predictability module
is absent, while the interpretability and explainability modules
are functional, albeit they may break-down from time to time.
In this case, the system is able to communicate its states and
causal chains for its decision, but it can’t anticipate the states
and/or rationale of the actors it is interacting with; thus, the
communication will likely get misunderstood sometimes and
a level of inefficiency will continue to exist in this system’s
ability to communicate with other actors in the environment.

IV. A CASE STUDY ON SKY SHEPHERDING

We present a case study that describes how our proposed
architecture could be applied to a real-world situation. The
scenario we use is that of shepherding, which is a method
of swarm control and guidance. We consider an environment
with three agent types, being a cognitive agent (the human
shepherd), the herding agent (a human drone pilot), and the
constituent swarm member agents (sheep in a flock).

The Sky Shepherd case is a live example of our current
work, where we employ the HST3-Architecture to guide the
design of the system, replacing the human pilot and the
drone with a smart autonomous drone guiding the swarm and
teaming with the farmer in a transparent manner.

In this scenario, our shepherd provides a general direction to
the drone pilot. The pilot interprets this direction and begins to
plan their tasks, sub-goals, path, and consider the reaction of
the flock, employing the agreed knowledge base to understand
what future states may look like. After making an assessment
and determining the optimal behaviour profile to meet the
shepherd’s intent, the drone pilot commences their sequence of
behaviours towards the sheep and begins shepherding. During
the task, the drone pilot agent receives communication from
the human shepherd to change their path due to a deviation
from the predicted flock behaviour, identifying a need for un-
derstanding of the human pilot behaviours. The new direction
from the shepherd is based on their understanding of the drone
pilot and the response of the sheep.

The levels of desired transparency are set by the shepherding
agent, and is based on an agreed semantic map between the
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shepherd agent and the drone pilot agent, minimal explanations
from the drone pilot agent (derived from the semantic map)
and inferred by macro and micro-behaviours exhibited by
the swarm. Consequently, the communicative transparency in
this system is asymmetric and based on the shepherd agent’s
understanding, with minimal consideration of the drone pilot
or a swarm agent context.

The operationalisation of the transparency tenets is de-
scribed through the cases in Section III-D. The first interaction
between the system agents commences with the confusing
transparency case, where insufficient interpretability creates a
knowledge-gap due to misunderstanding between the shepherd
and the pilot. As the agents develop a mature semantic
map, their level of interpretability increases. This results in
a baseline level of general information exchange that is used
as the basis to build from, moving to a case of communicative
transparency.

As the cognitive agents within the system gain experience,
they refine the language used and employ explanations based
on what has been observed, a case of rationally communicative
agents, which in turn develops a shared understanding of
behaviour and states. When a sufficient level of information
symmetry has been obtained between agents, agents develop
mutual predictability, switching between the rationally com-
municative case and the socially communicative case.

The interaction could evolve in multiple directions, where
interpretability, explainability and predictability continue to
evolve and improve, until the three tenets are mature enough
to become fit-for-purpose, resulting in a functionally fit-for-
purpose transparency.

As we evolve the system, the case of transparency will
change from one case to another. For example, the change
of a command from “move to the right quickly” to “proceed
45 degrees to the right at speed 10” by the shepherd to the
pilot may be to detail the desired state explicitly. This may
not increase the explainability or predictability for the pilot
as to why the action is being taken, however, enhances the
system interpretability through the refinement of the semantic
map. A qualified command that may increase more than one
tenet of transparency, such as “proceed 45 degrees to the right
at speed 10 in order to move the flock away from the tree
line” provides the command refined for interpretability, as well
as a more granular intent of “why”. This qualified command
now allows the pilot to develop goal- and path-planning states
while working within the prescriptive constraints issued by
the shepherd. Providing a more granular intent of “why”
increases the amount of communication between agents and
may increase the cognitive load required to support task
completion [16].

To support the shepherd agent in future tasks, an HST
interface that supports decision making, and is based on
HST3-Architecture, would enable the shepherd not only to
understand the system but also identify when improvements
are required and where. This would be possible due to the
fact the HST3-Architecture provides symmetry of information
understanding. In doing so, when the swarm is evolving, or
human and swarm co-evolving, transparency tenets can sup-
port effective communication and collaboration. The HST3-

Architecture can improve SA, leading to better decision mak-
ing by the human. In this situation, the HST3-Architecture can
enhance control of the flock through projected influence, as the
shepherd is better able to articulate what has occurred within
the system, what they are intending on doing, and how they
will achieve the desired goals. Using the HST3-Architecture,
we provide transparency to the shepherd within the system.
This agent can interrogate the drone pilot agent to discover
answers such as why are you positioning yourself there? Why
are you transitioning into this state? Why are you returning
to the base? How will you achieve the (immediate or future)
goal?

V. OPEN RESEARCH QUESTIONS

The HST literature and proposed HST3-Architecture have
identified significant challenges and opportunities for future
research proposed for human-swarm teaming. In this section,
we will highlight a few of what we have assessed as most
pertinent challenges in this area.

The first challenge is related to a few design decisions
for the interpretability module. One decision is related to
the internal representation and language the swarm use to
communicate with each other. This language could be pre-
designed with a particular lexicon based on a detailed analysis
of the possible information that the swarm members need to
exchange. However, in situations where the swarm needs to
operate in a novel environment, and for a longer period of time,
the lexicon, ontology, and language need to be learnt, adapted
and allowed to evolve. To design an open-ended language for
swarm is challenging, both in terms of our ability to manage
the exponential growth in complexity that accompanies such a
design, and the difficulty to interpret the continuously evolving
swarm language to an external actor, such as a human.

It has been established that a loss of trust is an influen-
tial variable with a causal effect for human reliance on a
swarm [12]. Moreover, there is a risk for humans on over-
relying on a swarm when their trust is based only on the
known capabilities of the swarm [13]. In environments where
the swarm is evolving, or human and swarm co-evolving,
transparency must be an essential element to facilitate effective
communication and collaboration. Addressing this research
question will ensure that oversight and shared understanding
can be maintained during phases of evolution, maintaining
higher trust and reliability in a swarm which is otherwise not
possible with opaque systems. Nevertheless, the non-stationary
nature of the internal language within each of these actors due
to its evolving abilities will create significant complexity in
interpreting the language to external actors, who could also
be evolving their own language. It is hard to conceive how to
overcome this challenge without allowing heavy communica-
tions to occur between the swarm and the human to exchange
changes in their lexicons, syntax and semantics.

A main explainability challenge in a swarm is the decen-
tralised nature of reasoning. In a homogeneous swarm, the
reasoning process within each agent are the same. While the
agents may accumulate different experiences due to them en-
countering different states in the environment, thus, they may
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be holding heterogenous knowledge, over a larger operational
time-horizon, it would be expected that they converge on
similar knowledge. Nevertheless, the human is not observing
necessarily every member of the swarm. Instead, the human
is observing some or all members simultaneously and needs
the aggregate causal chain that led a swarm to reach a
particular state or perform a particular set of collective actions.
The shepherding research offers a mechanism to overcome
this challenge by making the requirement of explanation the
responsibility of a few members of agents (the sheepdogs).

A number of previous studies identify meta-categories
[108], measures [109], and tenets for consideration [107]
to evaluate system transparency. A broad architecture at the
system level remains yet to be developed with the ability
to increase context-dependent SA through enhanced trans-
parency. However, little research is available that investigates
the success or failure of a swarm’s transparency. The HST3-
architecture offers a design where more research could be
conducted on the individual tenets of transparency and to
isolate the effects of each tenet on system performance and
agent’s trust.

VI. CONCLUSION

We have proposed a portfolio of definitions for the vital
concept of transparency, and its tenets interpretability, explain-
ability, and predictability, within the setting of human-swarm
teaming (HST). These measures describe these constituent
elements, and their contribution to designing transparency in
HST settings, essential elements for human trust. Our work
addresses the need within the literature to clearly define these
terms and present cases that differentiate how they are used.
The proposed architecture answers the question of “how” to
develop transparency in HST, providing a systems approach
to enabling SAT. Within HST3-Architecture, reliability can be
measured and evolved by leveraging the tenet of predictability.

Our architecture has general applicability, particularly in
situations where a shared understanding is required, to help
practitioners and researchers realise transparency for HST.
Example fields for application include security and emergency
services where operational assurance and decision traceability
are required, or as importantly agricultural settings where tasks
may be outsourced to increase productivity.
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