
Modulation of Force Vectors for Effective
Shepherding of a Swarm: A Bi-Objective Approach

Hemant Singh∗, Benjamin Campbell†, Saber Elsayed∗, Anthony Perry†, Robert Hunjet† and Hussein Abbass∗
∗School of Engineering and Information Technology, University of New South Wales, Canberra ACT, Australia.

Emails: {h.singh, s.elsayed, h.abbass}@adfa.edu.au
†Defence Science and Technology, Australian Department of Defence, Edinburgh SA, Australia.

Emails: {benjamin.campbell, anthony.perry, robert.hunjet}@dst.defence.gov.au

Abstract—In the shepherding problem, an external agent (the
shepherd) attempts to influence the behavior of a swarm of agents
(the sheep) by steering them towards a goal that is known to
the shepherd but not the sheep. The problem offers a level of
abstraction for Human-Swarm Interaction, where the human is
able to shepherd the swarm towards a goal. Similarly, a smart
robot could act as a shepherd to replace biological shepherds with
ground or air vehicles. In both cases, it is important to preserve
the energy/power of the shepherd by modulating the shepherd’s
influence vector on the sheep. Therefore, in this paper, we design
a force modulation function for the shepherd agent to optimize
the power used by the agent and systematically study the effect
of modulating the force of the influence vector on task success
and power used. The problem is further investigated using a
bi-objective optimization formulation, where the power used by
the shepherd as well as the time of completion of the task are
minimized, subject to a threshold of success rate. The findings
demonstrate the coupling between contextual information used by
the shepherd to modulate its influence vector and the effectiveness
and efficiency of shepherd to complete the task.

Index Terms—Force Vector Modulation; Human-Swarm Inter-
action, Influence; Shepherding; Swarm Robotics

I. INTRODUCTION

The shepherding problem for multi-agent systems has been
addressed by a number of authors with a great deal of variation
in models for both the shepherds and sheep. For models of
sheep, the most common approach is BOIDS [1], [2], [3], [4],
[5], [6]. This approach sees the sheep as a BOIDS swarm with
the three classic rules of separation, cohesion and alignment.

However the BOIDS model does not describe the behavior
of the sheep once they reach a destination, leaving the interpre-
tation/choice of this behavior up to the individual researchers.
This results in variations in successful shepherding behavior
between approaches. For example, Lien et al. [7] assume that
once individual sheep enter the target area, they will not leave.
This allows for behaviors where shepherds can steer small
groups or individuals to the destination, then leave to collect
another group without worrying about dispersion of previously
collected groups. In contrast in Lee and Kim [8], there is
no such assumption resulting in shepherds being required to
stay with sheep that have entered the target area or risk them
wandering out.

Modeling of the environment also varies greatly between
different studies, where variations include models that take
obstacles into account [8], [9] and those that do not [3], [1],

target areas that are objects or points [10], circular areas [11]
or simply the corner of a “paddock” [3].

The complexity of the problem influences the development
of the shepherding behavior. Linder and Nye [12] investigated
the implications of the problem design on the utility of the
shepherding behavior solution. They concluded that over-
simplification of the problem, especially in learning systems,
can result in shepherding behaviors that have little a generic
value.

As multi-agent shepherding moves from simulation to real-
world applications on robotic platforms, the limitations of the
robotic platforms will need to be considered in the design of
the shepherding logic. An important constraint on any mobile
platform is energy storage and the rate at which that energy is
consumed. Although there have been some successful demon-
strations of herding behavior on real systems [13], [14], [15],
the closest literature has come to addressing energy efficiency
in shepherding systems is in Tsunoda et al. [16], where they
investigate the efficiency of movement of shepherding agents
by manipulating repulsion/attraction zone sizes. However, no
literature was found that specifically aims to improve the
energy efficiency of shepherd behavior.

In this paper, we explore a dimension of shepherding that
was not explored in the existing literature: modulation of force
vectors. In practice, the sheepdog displays different speeds
and sometimes even a lying down behavior. This “resting”
behavior, be it in the form of speed control or coming to
a complete stop presents as a gap in the current literature;
we hypothesize it has a profound impact on task success and
energy consumption, especially when the shepherd is a robot
vehicle. By affording the shepherd the ability to self-modulate
its force vector, it could adapt its behavior and save energy.
Furthermore, in order to obtain good values of the modulation
parameter, we formulate a bi-objective optimization problem
that attempts to minimize energy as well as the time of
completion of the task, while ensuring that a certain level of
success rate is met.

In addition, in order to investigate the relationship between
energy efficiency and shepherding success, a modification
of the model described by Strömbom et al [3] has been
developed which uses a novel force modulation function for
the shepherding agent to allow the shepherding agent to
control its velocity in order to provide trade-off between



energy consumption and task completion time. The Strömbom
model was selected as it uses a simple and well-known model
for agent movement, can be applied to single or multi shepherd
systems and its use of decentralized control, sensed data
and local knowledge matches the realism of physical full-
distributed systems. Furthermore, it has been validated for its
biological plausibility and ability to mimic the behavior of real
shepherds.

The remainder of the paper is organized as follows. We start
with a literature review of the shepherding to showcase the
variety of approaches used and establish the research gap that
the current paper addresses in Section II. We present the simu-
lation model and introduce the function for self-modulation of
the shepherd’s force vector in Section III. Experimental design,
results and discussions are then presented in Sections IV and
V, respectively, and conclusions are then drawn in along with
future work in Section VI.

II. BACKGROUND

Although the literature on shepherding in the multi-agent
system domain is limited to a dozen papers, the work has
been diversified due to the importance of the problem in the
simultaneous control of multiple agents with one or a small
number of operators/shepherds.

Most shepherding models in the literature employ a single
shepherd to control the sheep swarm; especially the learning
system literature, this is likely due to the complexity of
learning over multiple shepherds simultaneously [17], [12],
[13]. Scripted shepherds also relied on a single shepherd, either
as a stepping stone to multi shepherd systems [7], [1], or due
to the complexity of real world robotic systems [4].

Learning behavior for shepherding has been demon-
strated using reinforcement learning [17], [18], genetic algo-
rithms [19], [13], co-operative co-evolution [20] and evolu-
tionary neural networks [12]. In the majority of the learning
system literature, the goal is to demonstrate learning systems
that can learn the shepherding task in the minimum number
of training simulations. An exception to this is Ozdemir et.
al. [21], which aims to demonstrate shepherding behavior
using the simplest agents possible. Ozdemir et. al successfully
demonstrated in simulation that evolutionary methods could
be used to generate a control function for shepherding agents
without memory, computing or communication resources that
resulted in co-operative shepherding behavior that was scalable
from 10 to 40 shepherd agents and 10 to 100 sheep.

In contrast, in the pre-programmed shepherding literature,
the goal is in defining and demonstrating optimal shepherding
behavior. Shepherding can be broken into 3 main subtasks
“herding”, “collecting” and “patrolling” [8], [7]. In herding
tasks the shepherd attempts to move sheep to a specific area
or point and in collecting the shepherd attempts to move the
individual sheep into a controllable herd.

Herding and collecting are referred to as “driving” and
“collecting” by Strömbom et al. [3]. The literature has rich
models to describe driving including driving straight at indi-
vidual sheep [5], or the center of mass of the flock [3], moving

side to side [7], or in a V-formation [2], [1]. Collecting appears
to be much more limited in terms of available strategies, with
behavior dictated by the ratio of shepherds to sheep [8].

III. METHODOLOGY

In this section, we firstly describe the Strömbom et al. [3]
model for shepherding then present our proposed modulation
model for the shepherd influence force vector.

We denote the set of sheep agents with Π =
{π1, . . . , πi, . . . , πN}, where the letters Π and π are cho-
sen as the first character of the Greek word for sheep
Πρóβατo and denote the set of shepherd agents with B =
{β1, . . . , βj , . . . , βM}, where the letters B and β are cho-
sen as the first character of the Greek word for Shepherds
Boσκóς . We denote the set of behaviors in the simulation with
Σ = {σ1, . . . , σK}, where the letters Σ and σ are chosen as the
first character of the Greek word for behavior συµπεριϕoρά.

Agents are initialized in a square area. We use u to denote
the unit, where u is a meter in Strömbom et al. [3]’s original
model but could equally generalize to other units per the
application. The agents adapt different behaviors described
below.

1) Shepherd βj driving behavior: When the sheep is clus-
tered in one group, the shepherd drives the sheep to-
wards the goal by moving towards a driving point that
is situated behind the sheep on the ray between the
sheep center of mass and the goal. The shepherd moves
towards the driving point with normalized force vector,
F tβjcd.

2) Shepherd βj collecting behavior: If one of the sheep
is further away from the group, the shepherd drives to
a collection point behind this sheep to move it to the
herd; in other words, to collect it. The shepherd moves
to the collection point with a normalized force vector
F tβjcd. A visualization of driving and collecting behavior
discussed above can be found in [3].

3) Shepherd βj adds a random force, F tβjε, at each time-
step to help resolving deadlocks. The strength of this
angular noise is denoted by Weβj .

4) Shepherd βj total force F tβj is then calculated as:

F tβj = F tβjcd +WeβjF
t
βjε (1)

5) Sheep πi repulses from βj using a force F tπiβ .
6) Sheep πi repulses from other sheep πi1, i1 6= i using a

force F tπiπi1 .
7) Sheep πi is attracted to the center of mass of its

neighbors Λtπi using a force F tπiΛtπi
.

8) Sheep πi angular noise uses a force F tπiε.
9) Sheep πi total force is calculated as:

F tπi = WπυF
t−1
πi +WπΛF

t
πiΛtπi

+WπβF
t
πiβj+

WππF
t
πiπ−i

+WeπiF
t
πiε (2)



where each W representing the weight of the corre-
sponding force vector.

The total force of each agent is used to update the agent
position as depicted in Equations 3 and 4.

If there is a sheep within three times the sheep-to-sheep
interaction radius, the agent will stop; thus, it will set its speed
to zero: Stβj = 0, otherwise it will use its default speed, Stβj =

Sβj . The speed of a sheep is assumed constant; that is, Stπi =
Sπi

P t+1
πi = P tπi + StπiF

t
πi (3)

P t+1
βj

= P tβj + StβjF
t
βj (4)

Both π and β agents in Strömbom model move with
fixed speed. Generally, this is neither biologically plausible
since dogs, for example, do not move with a constant speed
all the time they are shepherding, nor it is technologically
appropriate when considering the fact that as the approach
and closing speed of a vehicle shepherd on sheep represents
a key behavioral attribute (for example, aggressiveness) that
influence both the effectiveness and efficiency of successful
shepherding.

Smart π and β agents in a real-world robotic setting need to
comprehend their environment and make appropriate decisions
on how to modulate their speed in response to the state and
changes of their internal and external contextual information.
In this paper, we focus on modulating the speed of the
shepherd. The model is generalizable to all types of agents
in the model. However, modulating all agents simultaneously
will generate complex coupling in the dynamics. Focusing
this paper on modulating the shepherd alone is important
to systematically understand the effect of speed modulation
before it would be possible to consider the coupling effect
between concurrent modulation of speed between shepherds
and sheep.

To avoid a sudden change in modulation, we require the
modulation function to be a smooth continuous function.
Being smooth will be helpful for applying optimization
methods to optimize the way modulation takes place.
Moreover, the function needs to be bounded. The class of
logistic functions offers one way to do the modulation that
satisfies these conditions. We denote the logistic modulation
function for shepherd βj by M(Sβj , αβj ,m

0
βj
,mσ10

βj
) as

follows:

M(Sβ , αβj ,m
0
βj ,m

t
σ10βj ) =

1

1 + e
−αβj (mtσ10βj

−m0
βj

)
(5)

The steepness of the function, αβj , is an agent’s trait used
to control how the agent modulates its own speed, and is the
focus of the analysis in this paper. The Center of the function
is an agent βj specific value. The input is both agent βj and
time t specific, where σ10 denote the index of the modulation
behavior in the set of behaviors Σ.

The last input to the modulation function above, mt
σ10βj

,
is in principle the output of the fusion function C(t, βj) that
integrates contextual information to decide on how modulation
occurs.

The speed of shepherd βj at time t is modulated as follows:

Stβj = Sβ ∗M(Sβ , αβj ,m
0
βj ,m

t
σ10βj ) (6)

The acceleration, atβj meter per second-square, of shepherd
βj at time t is calculated as

atβj =
Stβj − S

t−1
βj

δβj

where δβj = 1
Sβj

, Sβj is the sampling frequency per second
used by the βj agent to sense and act in the environment;
in other words, it is how frequent the agent needs to sense
the environment and produce an action. We assume that the
sampling frequency of the decision making model is slow
enough for any requested change in speed of an agent to take
effect. A friction force could be incorporated in Equation 1 if
necessary.

Given the sampling frequency above, the shepherd agent
will move a distance Dt

βj
= δβjS

t
βj

; hence the amount of
work, Wt

βj
, done by agent βj at t is

Wt
βj = F tβj ∗D

t
βj (7)

and the amount of power Pt
βj

is

Pt
βj = SβjWt

βj (8)

IV. EXPERIMENTAL DESIGN

The thesis of this paper is anchored on the question on
how to design the modulation behavior of a shepherd to
its force vector to optimize its energy consumption while
completing the task successfully and in the shortest possible
time. Mathematically, the optimization problem is to find αβj
that minimizes task completion time and ensure that the task
is successful. This latter condition is a hard constraint defined
as shown in Equation 9, whereby the task is announced to
be completed when the distance between the position, P tπi , of
each sheep, πi, and the position of the goal, P tG, is less than
a predefined threshold. It is worth noting that in the discrete
state space, the circular topology of the Euclidean distance is
replaced with a grid.

∀πi, ‖P tπi − P
t
G‖ ≤ D (9)

Given that with a single shepherd, the above optimization
problem is in a single variable, we will explore the problem
space through a series of experimental studies to understand
the trade-off between energy consumption and task completion
time under different modulation strategies. The input to the
modulation function is the distance between the shepherd and
closest sheep to the shepherd; shown in Equation 10.

mt
σ10βj = arg min

i
‖P tβj − P

t
πi‖ (10)



We use a number of performance measures to analyze the
results such as the time taken by a shepherd to successfully
complete the task, the power needed by the shepherd to
complete the task, and the success rate of the shepherd in
completing the task.

All simulations are run for a number of simulation steps
per the equation suggested by Strömbom et al. [3] model. We
experimented with 80, 120 and 180 sheep and three different
initialization methods for sheep location: as a single cluster
north to goal (Init 1), two clusters one at North East and
North West (Init 2), and three clusters at North, North East, and
North West (Init 3). A factorial design generated nine different
initializations, each of which was run for 10 simulations
to estimate values of the three performance measures. The
shepherd was always initialized 50m South of the goal. Each
initial sheep cluster was initialized 75 meters away from the
goal at the direction of the cluster, with all sheep initialized
within a radius of 30 meters. The environment is assumed to be
infinite with no boundary. However, for visualization purposes
in this paper, all figures of the environment use 150m×150m
area centered on the location of the goal. The task is assumed
to be completed when all sheep is within distance 20m×20m
of the goal.

The parameters of the Strömbom model were set to their
default values as presented in the original paper. Strömbom
experimentally induced that all runs will be successful if
0.53N ≤ Ωπiπ ≤ N , where Ωπiπ represents the number of
π agents (neighborhood) a πi agent operates on. Accordingly,
we used Ωπiπ = 0.8N .

V. RESULTS

A. Sensitivity Analysis

The first set of results aimed at comparing the baseline
model without modulation against a model with modulation
using a steepness αβj = 2 to understand the effect, if any,
of modulation. As shown in Table I, modulation is faster and
saves power for herd sizes of 80 and 120, regardless of the
initial distribution of the sheep. In these cases, the sheepdog
managed to steer the sheep successfully to the goal in all runs.

When the size of the herd increases to 180, success rate
drops. Modulation had a better success rate with the first
initialization and worse with the other two. In the case of
the first initialization, modulation also used less power and
completed the task faster. We hypothesize that modulation is
undesirable when task success is low. The sheepdog needed
to use full power to increase task success. However, when
task success was high, modulation was able to manage the
power to its optimum level; thus, identifying wasted efforts and
reduced them. In essence, optimizing efficiency (time, power)
is more meaningful when effectiveness (success) is high and
less meaningful when effectiveness is low.

The first limitation in the above piece of results stem from
the fact that we fixed the value of steepness αβj = 2.
To understand the effect of the steepness of the modulation
function, we varied αβj between 0 (which results in half the
maximum speed independent of context) to 10 in a step of 1.

TABLE I
A COMPARISON BETWEEN THE MODEL WITHOUT MODULATION AS A
BASELINE AND THE MODEL WITH MODULATION WITH A STEEPNESS

αβj = 2

No Sheep Without Modulation With Modulation
Init 1 Init 2 Init 3 Init 1 Init 2 Init 3

Percentage of Average Completion Time Relative to Baseline
80 100% 89% 92% 97% 87% 91%

120 100% 85% 88% 95% 84% 87%
180 100% 103% 99% 94% 128% 118%

Percentage of Average Power Relative to Baseline
80 100% 88% 91% 97% 87% 90%

120 100% 85% 88% 95% 84% 87%
180 100% 103% 99% 94% 128% 118%

Success Rate
80 100% 100% 100% 100% 100% 100%

120 100% 100% 100% 100% 100% 100%
180 60% 60% 60% 70% 40% 50%

The success rate was 100% for a swarm size of 80 and
120 independent of the value of the steepness factor. This
was not the case for a swarm size of 180. We show the case
of swarm size of 180 in Table II. As shown, the steepness
factor has a multi-modal effect on success rate. Different
initial dispersion of a swarm requires different settings for
the steepness factor. For initialization methods 2 and 3, it is
possible to almost double the success rate of each scenario by
setting an appropriate steepness factor.

TABLE II
SUCCESS RATE FOR A SWARM SIZE OF 180 WITH DIFFERENT STEEPNESS

FACTOR AND INITIALIZATION METHODS.

αβj Init 1 Init 2 Init 3
0 60% 70% 90%
1 50% 40% 40%
2 70% 40% 50%
3 50% 60% 60%
4 30% 20% 40%
5 60% 70% 80%
6 60% 50% 50%
7 20% 20% 50%
8 50% 30% 40%
9 40% 50% 50%
10 50% 30% 50%

The minimum power occurred in all scenarios when αβj =
0, which is logical as this values halves the speed of the
shepherd over the course of a simulation. As shown in Table II,
when the speed is halved for the third initialization, the
success rate increased substantially. There also seemed to be
a relationship between the task completion time and average
power consumption.

To better see the trade-off between success rate and power,
we visualize the two values for different value of αβj in
Figure 1. It is important to mention that we excluded here the
case of αβj = 0 because it is equivalent to a no-modulation
case with lower speed. The lowest power was achieved at
values 2, 5, and 5 for the first, second, and third initializa-
tions, respectively. The fact that the lowest average power for
αβj > 0 also occurred for the largest success rate seemed
initially counter-intuitive because as the agent modulates its



Fig. 1. The trade-off between success rate and power consumption for a
swarm size of 180 and the three different initializations. The value of αβj is
shown in each graph as a percentage of αβj = 0. Best results are with high
success rate (x-axis) and low power consumption (y-axis).

speed to a slower speed, it may take longer to complete
the task; thus some runs may end up being unsuccessful.
However, after reflection, as the modulation of the force vector
becomes more effective in increasing the success rate, it is
this form of modulation that also saves power and, as such,
the average power saved is higher for a higher success rate.
Moreover, the way a sheepdog approaches the swarm impacts
the movement of the swarm; which implies that, sometimes
approaching the swarm with less force would have better
positive effect than maintaining a constant force. Nevertheless,
such an explanation is not always consistent as shown in
Figure 1, where different values of αβj resulting in the same
success rate had different level of power associated with them.
For example, for the first initialization, both αβj = 5 and
αβj = 6 had the same success rate, but different powers.

B. Bi-objective Optimization

The above results suggest that the value of αβj needs to be
optimized for each setup independently. The discrete cases we
explored above with the sensitivity analysis and the constraint
in the sensitivity analysis that αβj was always an integer value
are then relaxed.

The analysis was motivated by two questions. Can we
demand a minimum success rate for modulation? Is there a
trade-off between power saving and the time taken to complete
a task successfully? In other words, a task with effective
modulations would result in a lower power, but this may take
longer. We investigate both questions next, by considering a bi-
objective formulation. The two objectives are (a) to minimize
the time taken for task completion, and (b) to minimize power.
While optimizing the two objectives, we also want to ensure
that certain level of success rate is met.

We use the Non-dominated Sorting Genetic Algorithm-II
(NSGA-II) [22] implementation in PlatEMO [23] to solve
the above problem, with the steepness of the modulation
function as the decision variable. Given the expensive nature
of the simulation, we use a population size of 20 and run
the problem for 500 evolutions. Simulated Binary Crossover
(SBX) and Polynomial mutation were used with the default
probability and distribution index set in the framework (1 and
20 respectively). To evaluate each solution, an average value
of 10 simulations was used.

We demanded a minimum success rate as a hard constraint.
Constraint handling in NSGA-II, also known as “parameter-
less” constraint handling or “feasibility-first” constraint han-
dling, relies on three simple ranking rules.

1) For two infeasible solutions, the one with lower con-
straint violation is better.

2) When comparing a feasible and infeasible solution, the
feasible one is chosen regardless of objective values.

3) When comparing two feasible solutions, non-dominance
and crowing distance are used to decide on an appropri-
ate rank.

We experimented with two minimum success rates of 60%
and 80% and two ranges for αβj : one where 0 ≤ αβj ≤ 10 to
be consistent with the sensitivity analysis discussed above and



0 2000 4000 6000 8000 10000 12000

Power

0

100

200

300

400

500

600

700

T
im

e

Final population

Non-dominated solutions

(a) 80 Sheep, Init 1

0 2000 4000 6000 8000 10000 12000

Power

0

100

200

300

400

500

600

700

T
im

e

Final population

Non-dominated solutions

(b) 80 Sheep, Init 2

0 2000 4000 6000 8000 10000 12000

Power

0

100

200

300

400

500

600

700

T
im

e

Final population

Non-dominated solutions

(c) 80 Sheep, Init 3

0 2000 4000 6000 8000 10000 12000

Power

0

100

200

300

400

500

600

700

T
im

e

Final population

Non-dominated solutions

(d) 120 Sheep, Init 1

0 2000 4000 6000 8000 10000 12000

Power

0

100

200

300

400

500

600

700

T
im

e

Final population

Non-dominated solutions

(e) 120 Sheep, Init 2

0 2000 4000 6000 8000 10000 12000

Power

0

100

200

300

400

500

600

700

T
im

e

Final population

Non-dominated solutions

(f) 120 Sheep, Init 3

Fig. 2. Trade-off Solutions obtained with minimum success rate threshold set as 60% and α ∈ [0, 10]

a second, 0 ≤ αβj ≤ 1, the latter sub-region was selected as
our experimentation indicated that low values of αβj seemed to
give better results. A factorial design of these two dimensions
(success rate and αβj ) created four scenarios. Each scenario
was tested for the three swarm sizes of 80, 120 and 180, and
the three initialization methods, creating 4× 3× 3 = 36 sets
of results.

We divide the discussion in two parts. First, we discuss
the cases with swarm size of 80 and 120 where the different
scenarios had minor effect on the results. Second, we discuss
the case with a swarm size of 180, which demonstrated
variations in performance in different scenarios.

Figure 2 shows the final population in one of the runs and
the obtained non-dominated front, where the minimum success
rate was set to 60% and 0 ≤ αβj ≤ 10. Other corresponding
cases (success rate 80% and 0 ≤ αβj ≤ 1) showed almost
identical trends. The key finding from this figure is the clear
trade-off that exists between power and time.

As we move from the lower swarm size scenarios (where it
was easier to achieve success) to scenarios where the swarm
size is larger and therefore, it was harder to succeed, Figure 3

demonstrates the effect of this increase in task complexity. We
see in some of the figures that the obtained non-dominated
set only had 1-3 solutions in all cases. Narrowing down the
range of αβj seemed to improve convergence and clearly
demonstrate that the lower αβj , the smoother the steepness
of the modulation function, and therefore the better values
for both power and speed. Equally interesting is that it was
possible to achieve a minimum success rate of 80% in the
case of the first two initialization methods, despite that this
was not achievable during the sensitivity analysis stage. Thus,
the utility of the bi-objective formulation and optimization is
established in obtaining better solutions in terms of the three
key quantities of interest, i.e., energy used, time of completion
and success rate of completion of the task.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a strategy to modulate the force
vector for a shepherd agent controlling a swarm of sheep.
We demonstrated that as the size of the swarm increases,
self-modulation of the force vector increases success rate
and reduces power consumption. We explored the steepness



0 1 2 3 4 5 6

Power 10
4

0

500

1000

1500

2000

2500

3000
T

im
e

Final population

Non-dominated solutions

(a) 180 Sheep, Init 1 and 0 ≤ α ≤ 10

0 1 2 3 4 5 6

Power 10
4

0

500

1000

1500

2000

2500

3000

T
im

e

Final population

Non-dominated solutions

(b) 180 Sheep, Init 2 and 0 ≤ α ≤ 10

0 1 2 3 4 5 6

Power 10
4

0

500

1000

1500

2000

2500

3000

T
im

e

Final population

Non-dominated solutions

(c) 180 Sheep, Init 3 and 0 ≤ α ≤ 10

0 1 2 3 4 5 6

Power 10
4

0

500

1000

1500

2000

2500

3000

T
im

e

Final population

Non-dominated solutions

(d) 180 Sheep, Init 1 and 0 ≤ α ≤ 1

0 1 2 3 4 5 6

Power 10
4

0

500

1000

1500

2000

2500

3000

T
im

e

Final population

Non-dominated solutions

(e) 180 Sheep, Init 2 and 0 ≤ α ≤ 1

0 1 2 3 4 5 6

Power 10
4

0

500

1000

1500

2000

2500

3000

T
im

e

Final population

Non-dominated solutions

(f) 180 Sheep, Init 3 and 0 ≤ α ≤ 1

0 1 2 3 4 5 6

Power 10
4

0

500

1000

1500

2000

2500

3000

T
im

e

Final population

Non-dominated solutions

(g) 180 Sheep, Init 1 and 0 ≤ α ≤ 10

0 1 2 3 4 5 6

Power 10
4

0

500

1000

1500

2000

2500

3000

T
im

e

Final population

Non-dominated solutions

(h) 180 Sheep, Init 2 and 0 ≤ α ≤ 10

0 1 2 3 4 5 6

Power 10
4

0

500

1000

1500

2000

2500

3000

T
im

e

Final population

Non-dominated solutions

(i) 180 Sheep, Init 3 and 0 ≤ α ≤ 10

0 1 2 3 4 5 6

Power 10
4

0

500

1000

1500

2000

2500

3000

T
im

e

Final population

Non-dominated solutions

(j) 180 Sheep, Init 1 and 0 ≤ α ≤ 1

0 1 2 3 4 5 6

Power 10
4

0

500

1000

1500

2000

2500

3000

T
im

e

Final population

Non-dominated solutions

(k) 180 Sheep, Init 2 and 0 ≤ α ≤ 1

0 1 2 3 4 5 6

Power 10
4

0

500

1000

1500

2000

2500

3000

T
im

e

Final population

Non-dominated solutions

(l) 180 Sheep, Init 3 and 0 ≤ α ≤ 1

Fig. 3. Tradeoff Solutions obtained for 180 sheep with minimum success rate threshold set as 80% (upper two rows) and 60% (lower two rows) with
α ∈ [0, 10] (first and third rows) and α ∈ [0, 1] (second and fourth rows)

parameter of the modulation function and identified that this
parameter is critical for each form of initialization. We further

used NSGA-II to identify the best value for this parameter.
The results revealed that for less complex problems where



success is easier to achieve, there is a trade-off between
power and speed of the shepherd to complete the task. For
harder problems with large swarm size, the best performance
was obtained with a narrower range for αβj . Searching with
lower values for the boxing constraint on αβj made it easier
for NSGA II to find better spread of non-dominated sets,
although convergence was still worse than that achieved when
addressing the easier scenarios with swarm-size 80.

The results also revealed that smaller values for αβj created
a smoother steepness of the modulation function, which led
to better values for both power and speed. Moreover, it was
possible to reach a higher level of success with modulation
than without.

In this paper, we presented our first attempt to incorporate
modulation of the force vector in shepherding. Our future
work will explore this area further, varying the form of
the modulation function and offering more efficient ways to
optimize the steepness of the modulation function.

ACKNOWLEDGMENT

The authors would like to acknowledge the US Office of
Naval Research - Global (ONR-G) Grant.

REFERENCES

[1] K. Fujioka and S. Hayashi, “Effective shepherding behaviours using
multi-agent systems,” in Region 10 Conference (TENCON), 2016 IEEE.
IEEE, 2016, pp. 3179–3182.

[2] K. Fujioka, “Effective herding in shepherding problem in v-formation
control,” Transactions of the Institute of Systems, Control and Informa-
tion Engineers, vol. 31, no. 1, pp. 21–27, 2018.

[3] D. Strömbom, R. P. Mann, A. M. Wilson, S. Hailes, A. J. Morton,
and D. JT, “Solving the shepherding problem: heuristics for herding,”
Journal of The Royal Society Interface, 2014.

[4] D. Strömbom and A. J. King, “robot collection and transport of objects:
a biomimetic process,” Frontiers in Robotics and AI, vol. 5, 2018.

[5] T. Miki and T. Nakamura, “An effective rule based shepherding al-
gorithm by using reactive forces between individuals,” International
Journal of InnovativeComputing, Information and Control, vol. 3, no. 4,
pp. 813–823, 2007.

[6] T. Miki and T. Nakamura, “An effective simple shepherding algorithm
suitable for implementation to a multi-mmobile robot system,” in First
International Conference on Innovative Computing, Information and
Control - Volume I (ICICIC’06), vol. 3, Aug 2006, pp. 161–165.

[7] J.-M. Lien, O. B. Bayazit, R. T. Sowell, S. Rodriguez, and N. M. Amato,
“Shepherding behaviors,” in IEEE International Conference on Robotics
and Automation, vol. 4. Citeseer, 2004, pp. 4159–4164.

[8] W. Lee and D. Kim, “Autonomous shepherding behaviors of multiple
target steering robots,” Sensors, vol. 17, no. 12, p. 2729, 2017.

[9] E. Masehian and M. Royan, “Cooperative control of a multi robot
flocking system for simultaneous object collection and shepherding,”
in Computational Intelligence. Springer, 2015, pp. 97–114.

[10] Y. Sueoka, M. Ishitani, and K. Osuka, “Analysis of sheepdog-type robot
navigation for goal-lost-situation,” Robotics, vol. 7, no. 2, p. 21, 2018.

[11] S. Razali, Q. Meng, and S.-H. Yang, “Immune-inspired cooperative
mechanism with refined low-level behaviors for multi-robot shepherd-
ing,” International Journal of Computational Intelligence and Applica-
tions, vol. 11, no. 01, p. 1250007, 2012.

[12] M. H. Linder and B. Nye, “Fitness, environment and input: Evolved
robotic shepherding,” 2010.

[13] A. Schultz, J. J. Grefenstette, and W. Adams, “Roboshepherd: Learning
a complex behavior,” Robotics and Manufacturing: Recent Trends in
Research and Applications, vol. 6, pp. 763–768, 1996.

[14] B. Bat-Erdene and O. Mandakh, “Shepherding algorithm of multi-mobile
robot system,” in 2017 First IEEE International Conference on Robotic
Computing (IRC), April 2017, pp. 358–361.

[15] M. Evered, P. Burling, and M. Trotter, “An investigation of predator
response in robotic herding of sheep,” International Proceedings of
Chemical, Biological and Environmental Engineering, vol. 63, pp. 49–
54, 2014.

[16] Y. Tsunoda, Y. Sueoka, and K. Osuka, “On statistical analysis for
shepherd guidance system,” in 2017 IEEE International Conference on
Robotics and Biomimetics (ROBIO), Dec 2017, pp. 1246–1251.

[17] M. Baumann and H. K. Büning, “Learning shepherding behavior.” Ph.D.
dissertation, University of Paderborn, 2016.

[18] C. K. Go, B. Lao, J. Yoshimoto, and K. Ikeda, “A reinforcement learning
approach to the shepherding task using sarsa,” in 2016 International
Joint Conference on Neural Networks (IJCNN), July 2016, pp. 3833–
3836.

[19] J. Brulé, K. Engel, N. Fung, and I. Julien, “Evolving shepherd-
ing behavior with genetic programming algorithms,” arXiv preprint
arXiv:1603.06141, 2016.

[20] J. Gomes, P. Mariano, and A. L. Christensen, “Cooperative coevolution
of partially heterogeneous multiagent systems,” in Proceedings of the
2015 International Conference on Autonomous Agents and Multiagent
Systems. International Foundation for Autonomous Agents and Multi-
agent Systems, 2015, pp. 297–305.

[21] A. Özdemir, M. Gauci, and R. Gross, “Shepherding with robots that do
not compute,” in Artificial Life Conference Proceedings 14. MIT Press,
2017, pp. 332–339.

[22] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE transactions on evolu-
tionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[23] Y. Tian, R. Cheng, X. Zhang, and Y. Jin, “Platemo: A matlab platform
for evolutionary multi-objective optimization [educational forum],” IEEE
Computational Intelligence Magazine, vol. 12, no. 4, pp. 73–87, 2017.


